Announcements re Lab 2 (due Friday 1/21)

• If you use text (vs. indexed Matlab version), skip headers and non-text files (via flags in Rainbow)

• For people having trouble compiling Rainbow, a link to tweaked source code has been added

• You are not restricted to Rainbow & Matlab
Topics for Today

• Lab 1 Solutions
• More on Vector Classifiers
• Features
• Classification vs. Posteriors vs. Scoring
• Evaluation
Lab 1 – Part 1

• Trigram perplexity on the eval set range:
 – 79-82: using modified KN smoothing or another variation chosen in comparative expts
 – 84: using default Good-Turing smoothing

• Minor variations in results due to whether the vocabulary is specified in n-gram count (implementation issue related to OOV handling)
Lab 1 – Part 2

• Best
 – Mixture + Cache (72-73)

• Other good choices
 – Cache LM (74-76)
 – Switching long/short trigram (76)
 – Stemmer+trigram (77)
 – 4-gram (77)
 – Swb/news mixture (79)

• General findings:
 – Cache wt = 0.1-0.13
 – Swbd mix wt = 0.8-0.9

• Degradation
 – Factored LM: 290
 – Class LM w/ 200 auto classes (106)

• Vocabulary problems???
 – POS trigram (20)
 – Stemmer+trigram (58)
Lab 1 – Write-Ups

• Objectives for your lab write-ups:
 – Insights on alternatives: you must provide enough detail so we know what you did in order to compare results
 – Communication skills: you must provide detail for duplication and findings for busy people

• Bottom line:
 – Configuration details are important
 – Well motivated conclusions are valuable
Reminder re Vector Classifiers

• What leads to a vector classifier?
 – Any problem where you have a fixed number of “measurements” on the document/sentence/word, etc.
 – Applications such as: sentiment detection, personality detection, word sense disambiguation, sentence boundary detection, dialog act recognition, ….
 – Sequence models that include vector observations (model component)

• Why should you use vector models?
 – Allows complex features
 – Storage/computation limitations
Knowledge vs. Machine Learning

• 15 years ago NLP was rule-based
• Now >90% of NLP papers are statistical
• A few years ago: data is king
• Current trend: knowledge is in
 – Linguistic models with probabilities
 – Statistical models with linguistic features (not just words)
Today: Focus on Models

• Some important models
 – Naïve Bayes (review)
 – Local learning (memory-based learning)
 – Support vector machine (SVM)
 – Neural networks
 – Rule learning
 – Loglinear, MaxEnt
• Connection to features
 – Model/feature match (e.g. cont vs. discrete vs. mixed)
 – Models as analysis tools
Naïve Bayes (Review)

• MAP rule (min error decision rule)
 \[c^* = \arg\max_c P(c \mid x_1, x_2, \ldots, x_d) \]
 \[= \arg\max_c P(x_1, x_2, \ldots, x_d \mid c)P(c) \]

• Assume features are independent
 \[P(x_1, x_2, \ldots, x_d \mid c) = \prod_{i=1:d} P_i(x_i \mid c) \]

• \(x_i \) can be any feature

• Problem of naïve assumption – confidence
Local Learning

- Nearest neighbor
 - Save all training data $X^1, X^2, \ldots X^N$
 - Compare new X to all training samples
 - Label X with class of closest sample

- Variation: KNN – Find the K nearest neighbors and vote

- Challenges:
 - Storage/computation for large training sets
 - What is the right distance measure?

Name that fruit!
Linear Functions

\[f(x) = \sum_i w_i x_i + w_0 = w^t x' \quad x' = [x+1] \]

- Decision function: \(f(x) > 0 \) \(\Rightarrow \) class 1 (Perceptron)

- Ranking functions
 \(f(x_i) > f(x_j) \) \(\Rightarrow \) rank(i) > rank(j)
 (Rescoring, regression)
Support Vector Machines

• Goal: Decision boundary with max margin and min training error
 \[
 \text{Min } 0.5\|w\|^2 + C \sum_i H[y_if(x_i)]
 \]

• Extensions
 – Non-linear boundaries with kernels
 – Multi-class decision with multiple binary classes
Neural Network

Linear functions with non-linear operator

Sometimes used to map words to a continuous space
Rule Learning

Decision trees

- Greedy choice of questions to minimize entropy or classification error
- Leaf nodes associated with decision & posterior
- Often used for analyzing feature importance
- High variance \Rightarrow bagging (combining multiple trees)
AdaBoost

• Basic idea
 – Weighted combination of simple classifiers
 – Iterative design:
 • Find best simple classifier
 • Reweight training data based on errors

• Popular simple classifier: decision stump

- $f_1(x) > T$?
 - no
 - yes

- $f_i(x) > T$?
 - no
 - yes

- $f_n(x) > T$?
 - no
 - yes
Loglinear Models

• General form: exponential model
 \[P(y|x) = K \exp[\sum_i \lambda_i f_i(x,y)] \] (K is normalizing const)

• Common examples
 – Logistic regression
 • Typically binary \(y \), linear function of \(x \)
 – Maximum entropy model
 • Max likelihood solution to weights in exponential model is equivalent to maximizing entropy
Maximum Entropy

• Basic idea: Find λ_i to maximize entropy subject to some constraints, e.g.
 – Mean = sample mean & variance = sample variance \Rightarrow Gaussian distribution
 – Expected feature functions = empirical avg
 Language feature functions are often 1/0 indicators (is the bigram = XY?), empirical avg = relative frequency

• Practical problems:
 – Choosing the constraints (overtraining issues)
 – Solving for λ_i (iterative scaling, hill climbing,...)
Features

• **Recall**: Features can be any measurement on a “document”

• **Beyond knowledge-driven feature design**, challenges include:
 – Feature selection
 – Feature transformation
 – Feature induction (important for domain transfer, not covered today)
Feature Selection

• From last time: mutual information with class can be used to select features in Naïve Bayes classifiers

• What if features are not independent?
 – Joint feature selection & model design
 • For small problems, certain models (decision trees)
 – Wrapper approach: evaluate feature combination in terms of classifier performance
 • Greedy solutions: forward vs. backward selection
Feature Transformation

• Supervised methods
 – Linear discriminant analysis (LDA, not to be confused with latent Dirichlet allocation)
 – Neural network mappings
 – Posterior probabilities (PLSA)

• Unsupervised methods
 – Principle components analysis, independent components analysis
 – Latent semantic analysis
Vector Models are Multi-Purpose

• Classification
 – Simple decision (2-class, K-class), classifier combination
 – Bootstrapping methods (learning with unlabeled data)

• Posterior prediction
 – Confidence estimates (for decision or learning)
 – Probability output of a component in a bigger model (e.g. in a hidden Markov model)
 – Feature transformation

• Scoring
 – Reranking the output of a simple model with more complex knowledge sources (e.g. in speech recognition, parsing, translation)
Evaluation

• Classifier decisions
 – Percent correct
 – Precision/recall curve or F-measure
 – False/miss error tradeoff curve or equal error rate (EER)

• Posterior prediction
 – Normalized cross entropy
 – Error detection curves