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The goal of this dissertation is to develop a machining tool-wear classification system which
uses features drawn from accelerometers that respond to machining vibrations. Specifically,
we use features from wide band accelerometer signals in a two stage dynamic classifier
estimating the flank wear on end mills cutting notches in either steel or titanium work-
pieces. Since no standard data set and test paradigm exists for this task, we introduce an
experimental paradigm which incorporates new evaluation metrics not previously used in
tool-wear monitoring.

Until recently, only static classifiers have been used for tool-wear applications. However,
the process of increasing wear is dynamic. Individual wear events which occur at a changing
rate and last for a few milliseconds gradually change a tool’s cutting edge from sharp to
dull. Our experiments also show that within an individual cutting pass the wear process
changes as the cutter moves into and out of “regions of interest” which effect the sensor
features used in classification. We select features which are sensitive to the dynamics at
these various time scales. We demonstrate a single-rate dynamic classifier which models the
dynamics of wear both within an individual cutting pass and also over the cutting life of

the tool.



Our single-rate dynamic classifier captures the slowly varying wear phenomena by using
sequential states in a hidden Markov model. To improve the modeling of the rapidly varying
discrete wear events that last several milliseconds, we extend the single-rate dynamic clas-
sifier to a multi-rate classifier. The multi-rate classifier splits the task of modeling events
at the two time scales into two state-coupled classifiers processing feature streams at differ-
ent data rates. We demonstrate that coupling the two classifiers during classification gives
better performance than combining the outputs of the separate classifiers in a second stage.

The availability of data in this application is limited. Data annotated with the correct
level of wear is even more scarce. We demonstrate a method of using both labeled and
unlabeled data to train model parameters. The broad range of cutting conditions encoun-
tered in actual industrial practice imposes the need for the classifier to generalize to cutting
conditions not included in the model training. We demonstrate feature processing which
allows us to generalize to a limited range of cutting conditions including the use of features
drawn from accelerometers with different response characteristics.

Our classification system is not intended to be the sole arbiter of the decision of whether
or not a cutter should continue to be used or be replaced. We present the information
from the classifier in several different formats to assist the machinist in making an informed
decision. Qur system estimates the wear on the primary cutting edge at the end of each
cutting pass. In addition to this estimate, we provide a measure of the confidence in the
cutter wear having exceeded a predefined level considered to constitute the end of the
cutter’s useful life. Prior to cutting with a new tool, the useful life for the cutter is expected
to be the average for this type of cutter being used under the present cutting conditions. At
the end of each cutting pass, our system updates this estimate of the remaining cutter life.
We incorporate the actual cutting behavior seen for the particular cutter in use resulting in
a more accurate prediction than is possible with a simple average.

The accuracy of our single-rate classifier is 90% to 97% when classifying the wear on
cutters milling steel. Even on the more difficult problem of classification when cutting

titanium, our multi-rate classifier achieves accuracy of 94%.
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GLOSSARY

BREAKAGE: Breakage refers to the catastrophic failure of the cutter shaft.

CEPSTRA: The cepstrum is the inverse Fourier transform of the log of the spectrum of

a signal.

CHATTER: Episodes of excessive cutter vibration.

CHIPPING: This type of cutter wear refers to the phenomenon where the primary cutting

edge fractures locally rather then exhibiting smooth wear.

CRATER WEAR: This refers to pitting on the flute face behind the primary cutting edge.

CUTTER: The term cutter is used in the milling community to refer to the cutting bit

which actually comes in contact with the metal being machined.

CUTTING PASS: A single cutting event. This includes some “air cutting” prior to entering

the workpiece, the metal cutting and some final “air cutting”.

CUTTING SPEED: This is the surface speed at which the cutting edge moves through the

workpiece. It is determined by the spindle RPM and the diameter of the cutter.

DEPTH-OF-CUT: Both radial and axial depths-of-cut describe the cross-section of the

metal chips removed from the workpiece.

FEED RATE: This is the linear speed of the cutter axis as it moves through the workpiece.

FLANK WEAR: This refers to the dulling of the primary cutting edge of a cutter through

an abrasive wear mechanism.

xi



FLUTE: One of several helical cutting edges of a milling cutter.

FRACTURE: Fracture is the term used here to describe severe chipping when there has

been a bulk breakage of the primary cutting edge.

GLM: A Generalized Linear Model (GLM) defines a non-linear mapping between a de-

sired output variable and a vector of input predictors.

HMM: A Hidden Markov Model (HMM) is a stochastic model of a process that has
piecewise stationary regions, where the time evolution of the non-stationary behavior

can be characterized in terms of an unobserved discrete Markov chain.

NCE: Normalized Cross Entropy (NCE) is a measure of the amount of information added
by the classifier as compared to the information contained in the priors from the

training data.

ROC: Receiver Operating Characteristic (ROC) plots the probability of detection vs.

the probability of a false alarm for different classifier operating points.

REMAINING LIFE: The number of cutting passes between the present pass and the first

for which the cutter has exceeded the WORN threshold.

TOOL: The term tool as understood in the milling community refers to the cutting bit

which actually comes in contact with the metal being machined.

WORKPIECE: The bulk material being machined by the cutter.

xii



Chapter 1

INTRODUCTION

Metal milling cutters suffer from various types of progressive wear which, if not con-
trolled, degrade the quality of work produced. If cutting continues with a WORN cutting
tool it will break, causing further damage to the workpiece being milled. By listening to
the cutting, feeling the vibrations of the milling machine and inspecting the chips produced
during cutting, master machinists are able to predict the amount of wear on the cutting
edges. However, it is not possible to dedicate a master machinist to the task of constantly
monitoring tool-wear. In fact, the present industrial solution is to minimize the involvement
of the human operator as much as possible.

A solution commonly seen on the factory floor is to replace cutters according to a fixed
schedule based on average cutter life. A conservative schedule, which avoids damage to the
workpiece by replacing the cutter after a fixed time, results in an inefficient use of the cutting
tool and unnecessary down-time without completely eliminating costly failures. The wide
variation in usable cutter life makes this approach ineffective and operators must retain the
power to override this decision. For example, our test set contains cutters which lasted for
36 minutes and ones which required replacement after only 10 minutes.

Fully automated systems attempt to reduce the problem of wear to a binary “continue
use” or “replace the tool” decision. The goal is sufficient accuracy to allow unattended op-
eration. In practice, the challenges of predicting tool-wear have resulted in system accuracy
too low for acceptance on the factory floor. Improvement to a system developed under the
controlled set of conditions found in a research lab will only come from new information
gained from work under actual factory conditions. These potential improvements which

would be made possible by the knowledge gained from fielded systems are lost because the



low reliability of most academic and many of the commercially available monitoring systems
causes them to be simply ignored [1].

We propose a system which is viewed as an aid to the human operator rather than
a replacement. The system described here provides an alert when close supervision of
the cutting process is required and provides information about when cutter replacement is
warranted. Such a system must as accurately as possible model the wear process and then
translate the information into a format useful to the human operator.

The first step in accurately modeling the wear process is recognizing that cutter wear
is by nature a dynamic rather than a static process. At the longest time scale, wear is not
the binary process assumed by earlier tool monitoring systems. Using a binary wear model
assumes that cutting tools suddenly jump from being sharp to needing replacement. In
reality they move from being new to progressively greater levels of wear. Knowledge of the
level of wear in a previous cutting pass can reasonably be expected to improve the accuracy
of classification of features from the present pass. At a finer time scale, the behavior of a
cutting tool changes as it moves through the workpiece. In some materials a progression
from the “entry” to “bulk” to “exit” segments of an individual cutting pass is seen. In others
the cutting tool transitions between periods of quiet and noisy cutting several times within
a single pass. Accurate interpretation of the sensor signals used for indirect wear monitoring
is improved if this context of the recording is understood. At the finest time scale, the rate
of long term edge wear is accelerated by momentary chipping or other transient types of
events. We describe in this dissertation a dynamic classifier which we have developed to
model these time progressive characteristics of the wear process.

Rather than limiting ourselves to working at only one or another of the time scales where
the dynamic characteristics of cutting become evident, we also describe a modification to
our dynamic classifier which processes information at two different data rates. In this
multi-rate classifier we not only make use of data from different time scales but model
the interrelationship between events occurring at the two data rates. Slower time scale
information about the estimated level of wear and the fact that a cutter is in the middle
of a noisy cutting period affects the interpretation of data collected during a single cutter

revolution. In the same way, repeated transient types of events such as chipping seen at the



faster time scale increase the likelihood of classification of a higher level of edge wear.

Both the single-rate and multi-rate dynamic classifier allow us to replace the binary
WORN vs. NOT WORN decision with a multi-level quantized estimate of the present level of
wear on the cutting tool. This progression of wear labels allows the operator to differentiate
between cutters which are still almost new from those moving toward the end of their useful
life. Adding a post processing stage allows us to use the information from the dynamic
classifier to generate two additional outputs for the operator. In the first we generate a
confidence estimate that the tool has exceeded an acceptable level of wear on the primary
cutting edge. In the second we provide an estimate of the tool’s remaining life.

The confidence estimate augments the quantized wear output by providing an estimate
of the likelihood that the cutter is actually WORN. While the wear labels from the dynamic
classifier are discrete, the confidence estimate is a continuous measure of wear. Even when
the wear label remains the same, the probability of wear should increase with increased
cutting. With this increased resolution on the present state of the cutting tool, it is left up
to the operator to decide what level of confidence is reasonable for the particular milling
operation in progress. The ongoing estimate of the tool’s remaining life provides another
indication of when closer supervision by the machinist is required. The intent in providing
each of these types of output information is to give the machinists information which they
can combine with their knowledge of the particular milling operation. The merging of
information from the classifier with the knowledge of the machinist allows more timely and
accurate decisions about cutter replacement.

Moving away from full automation to the manufacturing aid described here makes it
possible to realize a system which is both useful and acceptable in a production machine
shop. However, for such a system to be successful, practical machining characteristics
must be taken into consideration. We must be able to properly classify wear when cutting
conditions such as tool size and cutting speed change. Within reason, we must be able
to accommodate these changes even if the resulting cutting conditions were not seen in
training. Classification performance must be able to tolerate features generated by different
transducers on different milling stations. In this thesis we address these issues and present

the results of our attempts to deal with some of the practical aspects of a tool-wear system.



One of the major practical considerations driving system design is the availability of
training data. Expanding the number of model parameters necessary to properly implement
a dynamic classifier such as ours calls for more labeled data than is practically available
in this type of application. To deal with the problem of sparsely-labeled training data
we propose and evaluate several alternatives for using unlabeled data in estimating model
parameters.

In chapter 2 we begin our discussion of monitoring tool-wear. We start with an overview
of past work and a review of terminology. We present details about the processes of tool
wear in general and those details particular to an understanding of wear in a metal milling
application. In this work we focus on tool wear in a milling application which is acknowl-
edged to be more demanding than the drilling and turning applications included in our
review of past work. In particular, we address wear while cutting either steel and titanium.
Milling steel, while challenging, is reasonably well behaved compared to the particularly
challenging problems presented when working with titanium. The details of the materi-
als and cutting conditions seen during our evaluations are presented in chapter 3. In this
chapter we also present the techniques used for feature extraction and the metrics used for
evaluation.

Having defined the problem, the test paradigm and the methods of evaluation, we present
our single-rate dynamic classifier in chapter 4. Applying this classifier to a real world milling
problem raises the need to deal with some of the practical issues encountered in tool-
wear monitoring. In particular, we investigate approaches to problems of generalization (to
different sensors and cutting conditions) and training in the presence of sparsely labeled
data, as discussed in chapter 5. The outputs of the single-rate dynamic classifier are further
processed by the second stage of our tool-wear system as detailed in chapter 6, providing
additional information to the operator.

The results of classification from chapter 4 make it clear that a better model is needed
for successful classification of tools used in titanium cutting. In chapter 7 the single-rate
classifier discussed in chapter 4 is expanded to process information at multiple data rates.
We close in chapter 8 with a review of lessons learned and thoughts about future work for

this application.



Chapter 2

BACKGROUND

We begin our discussion of past efforts in tool-wear monitoring with a review of impor-
tant terminology; section 2.1. This review will provide a basic understanding of the types
of cutter wear, parameters of the milling process important to our research and a review
of the sensors which have been used in tool-wear monitoring. Once terminology has been
established, we will review previous work on feature selection and signal processing in sec-
tion 2.2. We will end with a review of the types of classifiers which have been applied to
this problem in section 2.3 and review their performance.

The application discussed here is tool-wear in a milling environment. The terminology
discussed in sections 2.1.1 and 2.1.2 is specific to this domain. However, lessons learned
from turning and drilling are also relevant to a discussion of the relationship of sensors and
tool conditions. The research discussed in section 2.1.3 as well as sections 2.2.1 and 2.3 is

drawn from all three machining environments.

2.1 Terminology

2.1.1 Types of wear

Tool-wear is a general term applied to machining applications such as turning, drilling and
milling applications. The term tool as understood in the milling community refers to the
cutter which actually comes in contact with the metal being machined, the workpiece.
The particular type of cutter of interest to us here is an end mill. End mills have a variable
number of helical cutting edges or flutes. The wear described in this work refers to changes
in the geometry of the primary cutting edge of these flutes. Nine separate classifications of
cutter wear are described in [2]. Those most often referred to in the literature are flank wear,

crater wear, chipping and fracture. Flank wear is the dulling of the primary cutting edge



through an abrasive wear mechanism. Depending upon the nature of the milling operation,
variable levels of wear are acceptable before the change in edge shape necessitates tool
replacement. An automated system must either incorporate this information in its decision
process or provide information which contains detail about multiple levels of wear. Crater
wear refers to pitting on the flute face behind the primary cutting edge. Fxcessive crater
wear changes the geometry of the edge and can deteriorate chip formation and weaken the
primary cutting edge. Chipping occurs when the primary cutting edge fractures locally
rather then exhibiting smooth wear. Fracture is used interchangeably to describe severe
chipping when there has been a bulk breakage of the primary cutting edge and catastrophic
failure when the shaft of the cutter breaks completely. Here, we will use breakage to mean
a catastrophic failure of the cutter shaft and “fracture” to refer to severe chipping. In our
work we concentrate on classification of wear rather than attempting to predict breakage.
During cutting, there may be episodes of excessive vibration of the cutter known as chatter.
It is useful to consider chatter behavior when classifying cutter wear, for chatter usually
increases the rate of wear, and violent chatter can cause breakage.

In spite of the fact that most wear monitoring systems treat these conditions as individual
events, it is common for more than one to be present at the same time. Systems designed
to identify only one of the conditions such as flank wear, typically do not make use of the
effects of another such as chipping. Chipping and chatter would be considered noise which
can degrade rather than be used to enhance classifier performance. Systems which are
designed to identify multiple wear conditions still treat each wear condition independently.
Sensors are selected for each wear condition and separate classifiers are used. To date, no
work has been done which uses knowledge of the presence of one type of wear to influence

the classification of another, though clearly they are related.

2.1.2 Machining parameters

A numerically controlled milling center in a typical industrial work cell uses multiple types
of cutters for a single job and may use a single cutter in several different ways. Operations

may use just the lateral, radial and/or corner cutting edges. Different operations call for



changes in the amount of material removed and the rate of removal. A roughing operation
requires a high rate of material removal and relaxed surface quality requirements. During a
finishing operation, the required removal rate is less but the requirements for surface quality
are more stringent. Therefore a higher level of wear is acceptable for a cutter used during
roughing than one used in a finishing operation; even if the cutter itself is the same.

Most of these changes have an impact on the data generated for classification. We will
refer to these relevant parameters, as well as pertinent characteristics of the cutter itself,
as cutting parameters. In order for a system to be of practical use in classifying wear, it
must be able to deal with these changing parameters. Since it is practically impossible to
train on all cutting conditions, a research goal is to develop a classifier which can be trained
under one set of conditions and generalize broadly to others unseen in training.

The cutting conditions can be grouped into three categorizes; those determined by set-
tings on the machining center, those dictated by the cutter selected for use, and those
resulting from the material being machined. In [2] the important cutting variables de-
termined by the machining center are listed as cutting speed, feed rate and depth-of-cut.
Cutting speed is the surface speed at which the cutting edge moves through the work-
piece. It is determined by the spindle RPM and the diameter of the cutter. Feed rate is the
linear speed of the cutter axis as it moves through the workpiece. Radial depth-of-cut
and axial-depth-of-cut describe the cross-section of the metal chips removed from the
workpiece.

Important parameters of the cutter itself are the diameter, number of flutes, pitch (dis-
tance between a point on one edge to the same point on the next edge), corner radius, the
helix angle of the cutting flutes and the geometry of the primary cutting edge.

Characteristics of the workpiece itself constitute the final group of cutting conditions.
To date, published results on the monitoring of milling cutter wear have primarily been
limited to different grades of steel. However, even under identical cutting parameters,
sensor features change if a different material is machined. For example, unlike steel, when
machining titanium the hot workpiece material will often diffusion-bond to the cutting
edges. This process of titanium from the workpiece welding to the cutter forms a “built-up

edge” (BUE) which changes the geometry and cutting characteristics of the cutter. As the



BUE increases, even a fresh cutter can exhibit behavior usually associated with a WORN
tool. When the forces experienced by the cutting edge exceed the material bonding forces,
the BUE breaks away. If the BUE breaks away cleanly, the cutter will return to behavior
associated with it’s level of wear prior to BUE. However, if particles of the cutting edge are
also torn away as the welded titanium breaks, there will be a more sudden increase in the
level of wear [2, 3]. One cycle of build-up and release of BUE welded titanium may be as
short as a second or extend over periods of as much as 30 seconds. Between these more
noisy cutting periods are periods of quiet cutting with a reduced rate of wear, free of the
BUE build-up and release cycles. Both noisy and quiet cutting may occur in all stages of a
cutter’s life.

This behavior seen when milling titanium and not when working with steel illustrates
the importance of considering the material of the workpiece as one of the critical “cutting
parameters”. These noisy/quiet periods are investigated in the multi-rate work discussed
in chapter 7.

Even when cutting the same material, changes will be encountered when the cutter passes
through hard spots in the workpiece which effect the vibration signal and may damage
the cutter. In this work our evaluations include the cutting of both steel and titanium.
Conventional techniques that are successful in monitoring wear when cutting steel are not
successful when applied to the problem of cutting titanium. We point out lessons learned
which are common to both materials as well as identifying those portions of the classifier

which benefit from material specific modeling strategies.

2.1.83 Types of sensors

Our interest is in indirect measurement of tool-wear while the tool is cutting. Sensors are
used to measure wear related phenomena from which we infer the level of tool-wear. In [4],
Dan and Mathew provide a review of the seven types of phenomena used to monitor tool
conditions. The top five are force, power, torque, vibration and acoustic emission. Force
transducers mounted on the workpiece or on the spindle bearing measure the force exerted

on the cutter as the workpiece tends to push it away. If cutting speed and feed rate were



held constant during milling, changes to the primary cutting edge would be expected to
show up as changes to the force on the tool. In practice, variations to both cutting speed
and feed rate are expected due to hard spots in the material and variations in the milling
center unrelated to wear. However, by correcting for these types of changes to cutting speed
and feed rate, force and torque sensors have been used successfully.

Accelerometers and acoustic emission (AE) sensors both respond to the mechanical
vibration generated by the deformation of the metal being milled, the shearing during chip
formation and the breaking of the chip away from the parent material.

Power sensors typically monitor either the total power sent to the spindle or track the
motor current profile during cutting. Again, assuming a constant RPM of the cutter,
changes in the cutting edge often exhibit themselves as changes in the amount of power
needed to maintain constant speed.

Sound, temperature and the roughness of the machined surface have also been studied
but are seldom used for monitoring wear. However, microphones are useful for detecting
chatter.

We evaluate wear on end mills with relatively small diameters, (1/2” and 1”). Force,
torque and power are typically not sensitive or fast enough to track the small changes due to
wear on 1/2” cutters; leaving vibration and acoustic emission as useful sensory modalities.
Accelerometers monitor both the vibration due to chip-formation and the transient shocks
caused by edge breakdown. Since they have been used successfully to monitor cutter wear [5,
6, 7], the classifier described here uses wide band features extracted from a vibration sensor.

Several researchers have shown that it is beneficial to draw features from more than one
type of sensor [8]. Here we use a single accelerometer which makes the task of generalizing
to different cutting conditions more difficult. We limit ourselves to a single sensor due to
the availability of data. Our focus is on modeling and not on feature extraction. Rather
than expanding the number of sensors providing data, we develop models which use multi-
dimensional feature vectors. These models provide a straightforward extension to multiple

sensor features should additional sensors become available.
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2.2 Feature Selection and Signal Processing

In section 2.1.3 we described the various sensors which have been found to be effective in
monitoring wear. While the primary emphasis of this thesis is the structure and initialization
of the classifier, feature selection is critical to the success of the classification system. The
features must contain the necessary discriminative information for the classifier to have any
chance of accurate classification. We also show that some of the challenges of a practical

tool-wear system can be addressed in the feature processing rather than in the classifier.

2.2.1 Feature extraction

Flank wear is caused by the microscopic removal of material from the primary cutting edge.
The rate at which these wearing events occur changes throughout the life of the cutter.
The duration of individual wearing events is in the millisecond time scale. As these short
time scale events accumulate, the level of wear gradually increases. The useful life of a
cutter extends over many minutes, or longer depending on the material hardness. We will
show that it is important to model both the slowly varying wear and the shorter time scale
transients when estimating cutter wear.

Emel and Kannatey-Asibu [9] identify chipping and fracture as well as the wear on tools
used in turning. To capture the shorter time scale events, each sample used for classification
consists of data from one millisecond of cutting. These same samples are also used to classify
the slower time scale flank wear. Systems intending to track only flank wear use features
from a widely varying range of time scales. The features used in [10] are the current and
force from an entire drilling pass. Carolan et al. [11] collect features several times for
every cutter rotation but then calculate the RMS energy for an entire pass. Others, such
as [12], consider short time samples of cutter behavior to be indicative of slowly changing
performance and sample at the same time scales used for transient detection.

Rather than choosing either a fast or slow time scale, we report on classifier performance
using fast time scale features, longer time scale features and the performance of a multi-rate

classifier using features from both time scales.
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2.2.2  Signal processing of sensor features

Just as researchers differ on sensor selection and evaluation paradigms, (section 3.1), they
differ on the number of features used and the signal processing techniques applied. One
simple system [13] uses a single feature with the only processing being the calculation of
RMS energy. In [11] the variation of the RMS signal is the selected feature. In an attempt to
make RMS variation more robust to changes in cutting conditions, this feature is normalized
by dividing each sample by the average of the standard deviation of all passes. The work
by Heck and McClellen [10] on drilling is an example of a system which, while still working
in the time domain, used multi-dimensional feature vectors. They used a multi-dimensional
parametric representation of the shape of the motor current curve during a pass to define
five features to which they added the delta in the total power.

Other systems look outside the time domain for classification features. Emel and
Kannatey-Asibu [9] calculate a standard FFT and then select as features the 20 frequency
components that result in the greatest distance between the means of the fault conditions
in their turning experiment. Niu et al. [14] use manually selected wavelet coefficients as
features for a neural net turning classifier. Chou and Heck [15] use wavelets in a multi-scale
binary tree to generate features for a static Gaussian mixture model classifier. The wavelet
coefficients are the observations at the leaves of a multi-scale tree. The correlation between
the coefficients is captured by the multi-scale tree parameters; these parameters are the
features used for classification. Atlas et al. [16] investigate other time-frequency analysis
techniques in a drilling application. They show qualitatively that minimum cross entropy
(MCE) distributions give sharper definition in both time and frequency compared to stan-
dard spectrograms. Gillespie and Atlas [17] have also drawn features from the ambiguity
plane for use in the same milling application discussed here.

Despite the variety of features investigated, there has been little work in comparing dif-
ferent representations in terms of classification performance with the exception of feature
reduction. We report performance using several approaches to feature selection. Since our
focus is on classifier design, our intent is not to identify the optimum feature set for this

application. Rather, we choose reasonable features to demonstrate the important charac-
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teristics of our classifier. However, the classifier design does impact the feature selection.
For example, the single and multi-rate topology of our first stage classifier requires features
at different time scales. Some of the practical implementation issues are best handled by
signal processing in the generation of classifier features rather than in the classifier itself. As
we discuss issues relevant to feature selection, such as generalizing across changing cutting
conditions, we will present our approach and demonstrate the efficacy of various techniques

to deal with these feature selection issues.

2.3 Classifier Architectures

Both static and dynamic classifiers have been used in tool fault detection. In some cases, the
role of the classifier was simply to evaluate the feature selection. In others, different classifier
architectures were proposed to help address either the problem of identifying multiple tool
conditions or to improve the classification under different cutting conditions. Until recently,
all classifiers for tool fault detection have been static classifiers, as reviewed in this section.
In the last few years, some researchers have attempted to model the dynamic nature of the
tool-wear process with dynamic rather than static classifiers. These efforts are discussed in
chapter 4.

Static classifiers applied to tool-wear monitoring have posed classification as a binary
problem of determining WORN vs. NOT WORN or broken vs. not broken. When a system is
intended to classify multiple types of wear, multiple binary static classifiers are combined
in multi-stage or parallel topologies.

Emel and Kannatey-Asibu use a two stage classifier [9]. The first stage separates fea-
ture vectors taken during a continuous section of a turning pass from ones taken from a
transient (chipping/breakage) section. The continuous vectors are fed to a classifier in the
second stage to determine WORN vs. NOT WORN. The transient vectors are processed by an-
other second stage classifier to determine whether they came from a chipping or a breakage
event. The first stage differentiating continuous from transient events was correct 95-100%
of the time depending upon the cutting conditions. The second stage classifiers correctly

identified whether a transient was a chip or a break 88-95%, while the WORN vs. NOT WORN
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performance was correct 71-75% of the time.

Parallel neural networks were used in [14] to separately classify transient or continuous
types of wear on turning tools. Prior to sending a signal to one of the two classifiers, a
test for wide sense stationarity was used to separate a transient signal from a continuous
one. If the original sensor signal was not found to be wide sense stationary, it was said
to contain transients. In this case, the wavelet coefficients of the original waveform were
separated into two groups, and an inverse transform performed to obtain two distinct time
waveforms, one for transients and one for the continuous components. These separated
signals were then classified by two parallel neural nets; one used to track wear and the other
to identify chipping and breakage. Rather than define a fixed WORN/NOT WORN threshold
to evaluate the classifier assigned to track wear, it was considered successful if it recognized
later passes of a tool as WORN and earlier ones as NOT WORN. The actual wear threshold
varied between 11 and 20 mils depending upon the cutting conditions.

Parallel neural nets are also used in another turning application [7] when processing
AE and accelerometer data. However, in this system, there is no attempt to separate the
continuous waveform from the transient. Each neural network is trained for a particular
tool condition (tool chatter, breakage, chatter and severe wear together, normal) and all
are presented with the same feature vectors for classification. The final output of the four
parallel neural networks are then evaluated by a human observer to decide tool condition.
Chatter and breakage were correctly classified 100% of the time while wear was correct 87%.

The primary approach to make a classifier more robust to changing cutting conditions
has been to increase the number of sensors providing classification features. The benefit
of multiple sensors was shown in [8] by comparing the performance of a simple two layer
neural network using three different sets of eight dimensional feature vectors drawn from a
turning experiment. Each set included the cutting speed and feed rate as two of the vector
dimensions. In two of the feature sets, the remaining six vector dimensions were selected
from both AE and force sensors. The third set used only the AE sensor for the remaining
six dimensions. The feature sets from both sensors outperformed those for the single sensor
88% to 80%. Adding a hidden layer to the neural network improved performance to 94%.

This is excellent performance for a turning wear classifier working with changes to feed rate,
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cutting speed and depth of cut. However, it should be pointed out that neither training
nor test data for this system included samples from times when the tool was in transition
between WORN and NOT WORN. Samples labeled as NOT WORN were from wear levels of 4,
5 and 10 mils. WORN training and test samples were from wear levels of 20 and 30 mils.
No samples were recorded for tools with wear between 10 and 20 mils.

Sick [18] reviews the work of several researchers using multi-stage neural networks for
sensor fusion in tool-wear monitoring. In these systems, the feature vectors from different
sensors are processed by separate neural networks to generate a preliminary classification
of tool-wear. The final classification is performed by a second stage neural network which
uses the preliminary classifications from the first stage as input.

The systems with published quantitative classification results are those applied to drilling
and turning. For the milling application, with the exception of publications of our work [19]
and work we have done in conjunction with other researchers at the University of Washing-
ton [3, 20], no quantitative evaluation of classification on independent test data sets with

more than one or two tools has been published to date.
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Chapter 3

TEST PARADIGM AND DATA

In this chapter we discuss the data sets used in our research and the metrics used for
system evaluation. Two of our metrics are new to the problem of tool-wear monitoring. Past
work in monitoring milling tool wear has been limited to a binary WORN vs. NOT WORN
decision. We review the various test paradigms and evaluation metrics which have been used
in the past in section 3.1. The cutting data used in our testing and the feature extraction
techniques used are described in sections 3.2 and 3.3. The metrics used to evaluate system

performance are described in section 3.4.

3.1 Previous Work

We will begin our discussion of the test paradigm used in this work with a review of the
evaluation metrics which have been used in previous research addressing the problem of
tool-wear.

There has been substantial work in tool-wear monitoring in turning, drilling and milling
from which we would like to benefit and to which we would like to compare results. However,
evaluating the performance of systems from previous work is difficult because of the absence
of a standard test data set and the lack of any standard test paradigm and evaluation metric.
The types of questions asked in the research cited here were “does this sensor track flank
wear?”, “what signal processing extracts good information from an accelerometer signal?”,
and “is a neural net better than a static Gaussian classifier?”. The difficulty in comparing
even those systems which ask the same question is that there is no consistent evaluation
metric.

When evaluating AE as a sensor for flank wear, Hutton and Hu [13] plotted the AE
RMS voltage against average flank wear during changes in cutting speed, depth-of-cut and

feed rate. They showed that as flank wear increased there was a monotonic increase in AE
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RMS voltage, a trend that they took as sufficient to identify the feature as a good one.
Drilling force was evaluated in [21] by plotting the maximum force against the number of
holes drilled. Since force increased with the increased use of the drill, it was considered a
good parameter for monitoring wear. In a system using force to detect tool breakage, Lan
and Naeheim [12] evaluated performance by seeing if there was a sudden change in the plot
of the autoregressive force parameter which corresponded to a time when it was believed
that a chip or breakage occurred. In all these studies, the evaluation tends to be qualitative
or descriptive and not indicative of actual classifier performance.

In those cases where classifier performance is reported, accuracy is the criteria used but
the objective of the evaluation changes. In a turning application, Emel and Kannatey-
Asibu [9] used a static Gaussian classifier with the objective of evaluating how good AE
features were at detecting tool-wear at two different cutting speeds and feed rates. Force and
AE sensors were evaluated in another turning application [8] with a neural net to classify a
tool as WORN or NOT WORN. In a drilling application, Heck and McClellan [10] evaluated
power and force features with an HMM. The HMM classified the data from every hole drilled
as having come from a tool which was WORN or NOT WORN. Performance was based on the
percentage of times the classifier correctly labeled a pass under conditions which included
changes to cutting speed and feed rate.

Either qualitative or quantitative evaluation is sufficient to choose between competing
sensors, signal processing techniques or classifiers evaluated under the same test conditions.
However a problem arises when trying to make comparisons when the experimental condi-
tions chosen by different researchers are not the same. Even when accuracy is the reported
performance metric, the definition of what is “correct” varies. In many cases, the level of
wear corresponding to WORN is unspecified. Rather than setting a threshold for WORN prior
to testing wear during turning, tools classified as WORN in [14] were measured after classi-
fication to have a wear level between 11 and 20 thousandths of an inch. Since this range
was considered reasonable, these were considered to have been classified correctly. This
methodology is problematic not only because it defines the wear threshold after scoring,
but also because there is no assessment of missed detections.

Evaluation is typically performed on test data which is separate from that used in
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training [7, 8, 9, 10]. However, some reports also include results from evaluations using
the same data in both training and test [6, 10]. Since this results in performance which is
optimistic, these should not be used when comparing competing systems. In most cases,
the training data is drawn from all of the cutting conditions being evaluated [7, 8, 9, 10, 14],
but in one case, results were reported for a system which trained on one set of cutting
conditions and tested on another [6].

In the absence of a standard data set and evaluation metric, we choose to work with
data representative of the milling application, apply the standard accuracy metric where

our work is similar to that done previously, and propose new metrics where appropriate.

3.2 Data Sets

The accelerometer data used in our work has been provided by Boeing Commercial Airplane
Group of Seattle, Washington. Data was recorded during the cutting of both steel and
titanium, using cutters with 1/2” and 1”7 diameter. In addition to the different material
used, important differences between the cutting of steel and titanium include the cutter
edge geometry, spindle speeds, depths-of-cut and end-point of acceptable edge wear. The

details of these data sets are described below.

3.2.1 Steel data

To gather the data necessary to evaluate classifier performance when cutting steel, a MAZAK
H800 numerically controlled machining center was used to climb-cut notches in a 24-inch
block of 4340 steel of Rockwell-C hardness 32. Both the 1/2” and 1”7 cutters were 4-flute,
30 degree helix, uncoated finishing end-mills made of M42 high-speed steel, flooded with
synthetic, water-soluble coolant. The cutting parameters are listed in Table 3.1.

The vibration sensor used was a Bruel & Kjaer model 4505 accelerometer mounted
radially on the front plate of the spindle housing, fed into a Bruel & Kjaer NEXUS-2692
conditioning amplifier set at 100mV/g. A SONY model PCHB244 DAT recorder set for
wide-band analogue bandwidth of 25 kHz was used to record the accelerometer output.

Two channels of the DAT recorder were sampled as signed 16-bit integers at 48 kHz with
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Table 3.1: Cutting parameters for the steel and titanium data sets. Letter prefixes are added
to the diameters listed for titanium cutting to distinguish between cutting with end-mills
made of M42 high-speed steel (M-1/2”, M-1") and end-mills made of Rex20 steel (R-1/27).

Cutting Parameter Steel Titanium
Cutter Diameter 1/2” 1” M-1/2” | M-1” | R-1/2”
RPM 611 344 733 367 420
Feed Rate (in/min) 12.2 6.9 14.7 13.2 2.5
Axial Depth-Of-Cut 0.5” 1.0” 1.0” 0.5” 1.0”
Radial Depth-Of-Cut | 0.1” 0.2” 0.2” 0.4” 0.1”
Wear Threshold 0.009” | 0.010” | 0.005” | 0.010” | 0.010”

ARIEL-ProPort/AT&T-DSP32c hardware and ENTROPIC ERS2000 software running on
a SUN SPARC-4/330. The accelerometer data was recorded for about 5 sec prior to the
cutter entering the workpiece, during cutting and for about 5 sec after exit. At the end
of a limited number of selected cutting passes, each cutter was removed and its wear level
microscopically measured and recorded by a master machinist before it was replaced and
cutting continued. The labels assigned based on these measurements are the known labels
discussed in this dissertation. The mid-point in the range of wear noted by the master
machinist is used to assign the steel cutting passes to one of five wear levels designated “A
- E”. The range of wear in each wear level along with its mapping to a binary designation

of either being WORN or NOT WORN is shown in table 3.2.

3.2.2 Titanium data

The titanium cutters are divided into a series of three data sets. Within these three series,
data is recorded with different accelerometers and using different grades of titanium.

The M-1/2” data was recorded using the same MAZAK H800 machining center used
when cutting steel. These titanium cutters were used to climb-cut notches in an 18-inch

block of 6AL4V Titanium of Rockwell-C hardness 32-34. Data for M-1" titanium was
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Table 3.2: Steel wear levels: Wear labels W; are defined by the midpoint of wear on the
primary cutting edge measured in thousandths of an inch. The binary NOT WORN or WORN
designations are determined by the specified threshold of wear. The numerical predictor
used by the P(worn) GLM is @.

Steel Wear Levels
W; | Wear Midpoint | @& | Binary Label
A Early passes 4.0 | NoT WORN
B < 6.7 6.0 | NoT WORN
C 6.7-9.0 7.5 | NoT WORN
D 9.0 - 10.25 9.5 WORN
E > 10.3 11.0 WORN

recorded on the same MAZAK H800 during climb-cutting of a 20-inch block of 10-2-3
Titanium of Rockwell-C hardness 34-36. Both the M-1/2” cutters and M-1” cutters were
4-flute, 35 degree helix, uncoated finishing end-mills made of M42 high-speed steel, flooded
with synthetic, water-soluble coolant. The cutting parameters are listed in Table 3.1.

The vibration sensor, conditioning amplifier and DAT recorder used to record the M-1/2"
and M-1” titanium data were the same as used to record the steel cutting data described
in section 3.2.1. The accelerometer data was recorded for about 5 sec prior to the cutter
entering the workpiece, during cutting and for about 5 sec after exit. Again, microscopic
measurements were made by a master machinist after a limited number of cutting passes.
The mappings from the measured range of wear to a quantized wear label W; and binary
labels are shown in table 3.3.

The R-1/2” cutting data is the third of the titanium data sets. In addition to the
different cutting conditions listed in table 3.1, there are significant differences between this
and the M-1/2” and M-1” already described. The cutters themselves are made of Rex20
steel rather than the M42 used to cut steel and used for the M-1/2” and M-1” titanium.
The titanium block being machined with the R-1/2” cutters was much harder having a

Rockwell-C hardness of 38-40 compared to the 32-36 in the M-data. The larger block size,
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Table 3.3: Titanium wear levels: Wear labels W; are defined by the midpoint of wear on
the primary cutting edge measured in thousandths of an inch. The binary NOT WORN
or WORN designations are determined by the specified threshold of wear. The numerical
predictor used by the P(worn) GLM is &.

Titanium Wear Levels
W; | Wear Midpoint | @ | Binary Label
A Early passes 1.0 | NoT WORN
B 25-49 3.5 | NoT WORN
C 5.0-74 6.0 | NoT WORN
D 7.5-9.9 8.5 | NoT WORN
E 10 - 12 11.0 WORN
F > 12 14.0 WORN

24” compared to 18”, and greatly reduced feed rate results in a much longer duration for a
single cutting pass. The typical M-data cutting pass lasted about 74 seconds compared to
approximately 580 seconds for the R-data. One impact of this increased pass duration is
the increased likelihood that the edge wear will move through multiple quantized levels in
a single pass. The Bruel & Kjaer model 8325 accelerometer used for the R-data has lower
transverse and longitudinal resonance than the model 4505 used in all other data sets. The
vibration sensor was fed into a Bruel & Kjaer 2525 conditioning amplifier set at 100mV /g
and recoded with the same DAT recorder used in previous data sets.

Steel, M-1” and R-1/2” data was recorded beginning with a fresh cutter and stopped
soon after a reasonable wear threshold was reached. The recording of M-1/2” data at times
began after several cutting passes and stopped in the middle of a cutter’s life, not running
to a typical WORN level. As indicated in table 3.3, the threshold of wear for the titanium
data is set to approximately 0.01”. The M-1/2” cutters were stopped when wear reached
approximately 0.005”. Some passes in the R-data were recorded when the edge wear had
extended up to twice this level. The extra wear label “F” is included to capture these passes

which have excessive wear. Including them in the models for a typically WORN cutting pass
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would bias the WORN model to require excessive wear before detection. The additional label
also indicates that the cutter has been used beyond the point where it can be reground and

used again.

3.3 Feature Extraction

Prior to use by the classifier, the raw accelerometer data described in section 3.2 is converted
into a series of feature vectors intended to capture the information necessary for classifica-
tion. We use features calculated at two different time scales. Fine rate features correspond
to the rate at which the cutting flutes strike the workpiece (four times per revolution).
Coarse rate features are determined at a period equal to forty times the period of fine rate
features. We use two approaches to feature extraction. Energy features (section 3.3.1) are
used on the steel test set. Cepstral features (section 3.3.2) determined at both fine and
coarse rates are used in classification of both steel and titanium. Auto-ambiguity and audi-
tory features (section 3.3.3), provided by colleagues at the University of Washington and at
Boston University respectively, are also used in selected tests comparing the performance

of the various feature sets.

3.3.1 Energy features

To determine the energy features, an FFT is computed for each time slice of accelerometer
data corresponding to the time that a cutting flute is in contact with the workpiece.! The
sum of the log of the energy in each frequency bin, log energy in the 8kHz bin and the
associated derivatives of these two features are selected as features for classification, giving
a total of four features. The 8kHz energy feature was suggested by initial data analysis
(inspection of spectrograms) and has been found to be useful in previous work [22]. The
sum of the log of the energy in each frequency bin can be thought of as a flattening of the
spectral information since it acts to reduce the impact of individual frequency bins. We use

this rather than the more typical log of the total energy because it gave better performance

! Actually, an average of FFTs from three overlapping windows within this time frame is used. We use a
512 point FFT for the steel 1/2” and 1024 for the steel 1”. Therefore the 8kHz feature bin is 90Hz and
45Hz wide respectively.
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in a pilot experiment. The FFT energy features with the spectrally flattened energy had
an accuracy of 96% on the steel cross validation training set. Replacing it with the more
typical energy features reduced accuracy to 87%. The use of feature derivatives is borrowed
from the speech recognition literature [23]. The derivatives are computed using the standard
linear regression formula over a five frame window.

_ 2521 9(0t+0 - Ct—0)

0
! 2 23:1 92

(3.1)

where ¢; is the static feature value.

The total energy and 8kHz energy dimensions of the feature vectors are normalized as
described in chapter 5 to make them more robust across changing cutting conditions prior
to the calculation of the feature derivatives.

Coarse-rate energy features are calculated by taking the average of M consecutive fine-
rate features. The derivative dimensions at the coarse rate are determined by applying the
regression formula after the average of the total and 8kHz energy has been calculated. In

all of our work, the ratio of fine to coarse-rate features is M = 40.

3.83.2 Cepstral features

The single-rate classifier described in chapter 4 makes successful use of the time-frequency
information in our energy features. Cepstral features retain the time-frequency information
and add the ability to generalize across changing accelerometers as will be shown in chap-
ter 5. Cepstral coefficients are also generally decorrelated and thus are well matched to the
use of diagonal covariances in our wear models.

In this work we make use of the HCopy function in the HTK tool box [23] to generate
cepstral features from the sampled accelerometer data described in section 3.2. The cal-
culation begins with the linear prediction of the system transfer function using an all pole

filter:
1

Zf:() a;jz™*

where p is the number of poles and ag is defined to be one. The HTK implementation

H(z) = (3.2)

suggests a filter with more poles than desired cepstral coefficients. In our implementation we
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begin with twenty cepstral coefficients using a 25th order filter. The filter coefficients a; are
chosen to minimize the mean square filter prediction error summed over the analysis window.
When calculating fine-rate features we choose an analysis window which corresponds to
110% of a flute period resulting in an overlap of 10% in the data used to determine adjacent
cepstral features. The cepstrum is the inverse Fourier transform of the log of the spectrum
of a signal. Rather than implement the transform, log, inverse transform to obtain the
cepstral coefficients, the HTK implementation computes the cepstral coefficients, ¢,, from
the filter coefficients, a,, using the simple recursion:

n—1

1
Cp = —ap + - Z(n —Dajcn—; (3.3)
i=1

When calculating features at a coarse rate we simply average 40 consecutive fine-rate
feature vectors.

To mitigate the effects of changing transducers, the cepstral mean subtraction discussed
in chapter 5 requires a good estimate of the contribution of the transducer to the cepstral
features. Our goal is to remove only the accelerometer component, i.e. without losing any
long term changes due to increased wear. When the early passes of a particular cutter have
been recorded, we use the first three passes to determine the cepstral mean for that cutter.
For the R-data, only the first pass is used because of the long duration of these cutting passes.
In the cases where the early passes are not available, we use a global cepstral mean for that
accelerometer and set of cutting conditions. This global cepstral mean is determined from
the first three passes of all cutters in the training data for the corresponding data series. In
a fielded system, changing to a different accelerometer would require the use of a new cutter
for the equivalent of three cutting passes to determine an accelerometer-specific cepstral
mean vector for processing data from the new accelerometer.

After cepstral mean subtraction, the dimension of the feature vector is reduced from
twenty to four. All data from passes in the training set assigned a binary label of WORN as
described in section 3.4 are pooled and a global mean and variance are calculated. The same
is done for those passes with a binary label of NOT WORN. The four dimensions with the

greatest distance between these two data groups are chosen as wear features. We investigate
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two distance metrics: the ratio of the between class scatter to the within class scatter

w _ nw)2
scatter ratio; = - (ui” = i) , (3.4)

2 2
2 (Ui,nw + Ui,w)

and a modification of the squared Mahalanobis distance between corresponding dimensions

of the two global models

1 /1y — nw _ o w
ri:_(luz A uz|>’ (35)
w

2 Ji,nw Ji,

where ;1 and azw are the mean and variance of the ¥ dimension of the WORN features and
i and aﬁnw are the mean and variance of the i’ dimension of the NOT WORN features.
Both metrics choose the same top three cepstral dimensions for both steel and titanium; the
difference is in the dimension chosen for the fourth feature. When classifying the M-1/2”
titanium cutters, the scatter ratio features had better accuracy on the CV test set: 98% vs.
93%. The performance on the test cutters went down: 71% vs. 86%. Therefore, we use the
features selected by the average Mahalanobis metric in all of our classification with cepstral
features. It is likely that some of the discriminative characteristics of the dimensions chosen
in this way will be redundant. However, performance is good and comparable to the energy
features when testing on the steel data set.

When this selection criteria is applied to the steel data set, the first four cepstral features
¢1,-..,cq are chosen. Using the same technique on the M-1/2” titanium data selects ¢, ¢4, ¢5
and cgg. Finally the dimension is increased from four to eight with the addition of the
derivative features (equation 3.1). The addition of the derivative features in testing on the
steel data set had no impact on the performance of the cross-validation training set where
accuracy was 94.5%. However, generalization to the 1/2” and 1” test data improved from
81% and 86% to 90% and 97%. The selected cepstral dimensions with derivative features
are used for all cepstral based tests.

Our work with the FFT energy features points out the value of using spectrally flattened
total energy as one dimension of our feature vectors. The energy feature available in the
HTK toolkit is the typical rather than spectrally flattened total energy. To investigate its

benefits when using cepstral features, we include it in a set of features for classification.

Rather than choosing the first four cepstral features, we choose the first three and energy.
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Substituting total energy for one of the selected cepstral features decreases performance and

is not used in our evaluations.

3.3.83 Auditory and auto-ambiguity features

The research reported in this dissertation is a part of a Multi-University Research Initiative
supported by the Office of Naval Research. We therefore had access to features derived
from our same data sets provided by other members of the MURI. Colleagues at Boston
University provided us with auditory features and colleagues at the University of Washington
with auto-ambiguity features.

To generate the auditory features, a filter bank with center frequency spacing and band-
width chosen to simulate the human auditory system was used to process the cutting data.
Human perceptual experiments carried out at Boston University pointed to placing partic-
ular interest on the activity in the 4kHz and 8kHz bands. Two measures were used; the
number of transients (Count) seen in each frequency band during the ten revolution window
and the mean interval between transients. The transients selected occur at most once per
flute, more typically less than once per revolution. Manual inspection by those performing
the auditory research showed a correlation between the rate of transients and cutter wear.
The 4kHz/8kHz, Count/Interval feature is added to the log total energy giving us four two
dimension feature sets. We then add derivative features giving us an additional four feature
sets for evaluation.

The auto-ambiguity features provided by Gillespie and Atlas [17] at the University of
Washington were selected using an unsupervised VQ algorithm. Auto-ambiguity features
were clustered into a set of codewords and codewords found to be correlated with tool-wear
were selected for use in classification. The five selected auto-ambiguity features were added

to the log of the total energy resulting in a six dimensional feature vector for classification.



26

3.4 Test Paradigm

3.4.1 Training, Cross Validation Testing and Test

Our work includes testing on data from the cutting of both steel and titanium. However, the
two different materials are never combined in a single data set for evaluation. Within these
two workpiece material data sets, the available cutters are partitioned by cutter into two
subsets; those used during system development (cross validation - CV) and a distinct subset
held out for system evaluation (Test). The cross validation sets are used to train model
parameters and evaluate different topologies and feature selection techniques, as described
below. Once development is complete, models trained with all of the cutters allocated to
the cross validation sets are used to classify the held out test cutters.

It is important that tuning model parameters not be done on the test data. In many
statistical classification applications, system design involves two test sets, a development test
set for tuning parameters and an evaluation test set for assessing performance. Because of
the limited number of cutters available and the importance of including all passes from a
particular cutter together in a training or test set, there was not sufficient data to have a
separate development test set. Instead, model parameter tuning is done via cross validation
testing on the training data. During the development phase, the N cross validation cutters
are partitioned into CV sets with M cutters used for training and N — M held out for test.
The particular cutters assigned for train or test in each CV set are rotated until all cutters
in the CV data are classified without training and testing on the same data.

Our tests with steel cutting data include fourteen 1/2” cutters and four 1”7 cutters
(table 3.4). Six of the 1/2” cutters are allocated for cross validation testing and then
training. When used for cross validation, the cutters are assigned to train/test sets in
three CV partitions; each of which uses four cutters for training and tests the two held
out cutters. Only 1/2” cutters are used during system development. Models trained with
these six CV/Train cutters are used to test eight different 1/2” cutters and the four 1”
cutters. This allows us to evaluate the ability of the models to generalize to different
cutting conditions.

The titanium data is used in a series of three different tests which we refer to as Series-
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Table 3.4: The number of cutters in the CV/Train and Test sets (#); where CV is the cross
validation test sets used during system development. The number of passes recorded (Rec)
and hand-labeled (Lab), and the number of passes used during accuracy and confidence
evaluation (WORN or NOT WORN) for the steel data set.

Steel Cross Validation and Test Data Sets

Train/Test Set # | Rec | Lab | WORN | NOT WORN
Steel 1/2” CV/Train | 6 | 87 | 12 6 49
Steel 1/2” Test 8| 8 | 11 7 24
Steel 17 Test 41 53 | 10 4 32

Table 3.5: The number of cutters in the CV/Train and Test sets (#); where CV is the cross
validation test sets used during system development. The number of passes recorded (Rec)
and hand-labeled (Lab), and the number of passes used during accuracy and confidence
evaluation (WORN or NOT WORN) for the series of titanium tests.

Titanium Cross Validation and Test Data Sets
Train/Test Set Data Set # | Rec | Lab | WORN | NOT WORN
Series-A CV/Train M-1/2” 6 | 70 | 12 9 52
Series-A Test M-1/2” 7| 7 | 13 11 53
Series-B CV M-1” 7| 54 | 15 5 40
Series-C Train M-1/2” M-1" R-1/2” | 20 | 148 | 41 10 123
Series-C Test M-1/2” M-1” R-1/2” | 14 | 108 | 27 7 87
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A, Series-B and Series-C (table 3.5). Our single-rate classifier approach to training with
sparsely labeled data and P(worn) processing are developed using the steel data set. The
Series-A tests are used to investigate the changes required when applying these to the cutting
of titanium. Series-A tests use the thirteen M-1/2” cutters. Six of the cutters are allocated
for cross validation testing and then training, using the same train on four, test on two CV
rotation scheme used for steel. We use a different WORN or stopping threshold in Series-A
tests. The M-1/2” cutters were not used until they reached the typical WORN threshold
specified for titanium. Data was collected from the time a cutter was fresh until it reached
a level which can be described as “mid-life” (wear level “C” in table 3.3). This is considered
a point of interest because it is at this level of wear that the rate of wear is expected to
accelerate and closer supervision by the operator is warranted. All of the same techniques
developed to classify a cutter as WORN are used during the Series-A tests. The only change
is that the threshold of interest is lowered from that usually associated with a WORN cutter
to a threshold indicating mid-life.

The noisy/quiet cutting seen in titanium is expected to cause problems for our single-
rate classifier. The Series-B tests are used to evaluate noisy/quiet cutting with both a
single-rate and a multi-rate classifier. The Series-B tests use the seven M-1” cutters. Due
to the limited numbers, all seven are assigned to cross validation testing (table 3.5). Here
we use a six way cross validation with six different combinations of train on five and test on
one to evaluate performance. Two of the cutters have a limited number of cutting passes
and are treated as a single cutter for cross validation rotation purposes. The Series-B tests
use only the M-1” cutters because the noisy/quiet cutting periods which are important in
our development of the multi-rate classifier described in chapter 7 are most apparent when
using these larger diameter cutters on titanium.

The Series-C tests use all of the M-1/2”, M-1” and R-1/2” titanium data. The intent of
these tests is to evaluate the best model performance under the changing cutting conditions
and different accelerometers represented by these three data sets. As such, there is no cross
validation testing because there is no further parameter tuning of the classifier designed
during the Series-B tests. The twenty training cutters in the Series-C tests consist of the

six M-1/2” training cutters used in Series-A, five of the M-1” cutters used in Series-B and
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nine R-1/2” cutters. The fourteen test cutters consist of the seven M-1/2" test cutters, two

M-1” and five R-1/2” cutters (table 3.5).

3.4.2 Assigning binary labels to test passes

Depending upon the output desired, we require either a quantized wear level or a binary
WORN vs. NOT WORN label for each cutting pass to be evaluated. In chapter 5 we describe
our approach for labeling the unlabeled training passes to expand the number of passes in
the training sets with a quantized wear label. The technique described here is used to select
and label unlabeled test passes and expand the number of cutting passes with a binary
WORN vs. NOT WORN label.

For both steel and titanium data, between 15% and 38% of the cutting passes include
known wear labels. Since this is not enough data for proper evaluation, we use the following
criteria to assign either a binary WORN or NOT WORN label to cutting passes not inspected
by the Boeing machinist. If a known label of NOT WORN is recorded at pass n, all passes
prior to n are also assumed to be NOT WORN, and we assume that the first pass is NOT
WORN. The passes between a known label of NOT WORN and a known WORN pass are not
evaluated during testing since the pass where the transition took place is unknown. If two
passes from the same tool have a known label of WORN, all passes between these two are
also assumed to be WORN. Table 3.6 shows a representative example selected from the steel
data set. One of the steel 1/2” cutters is assigned a known label of NOT WORN at pass
10, WORN at pass 14 and all other passes are unlabeled. Passes 1-2 are not evaluated, 3-10
are assumed to be NOT WORN, passes 11-13 are not evaluated and pass 14 is WORN. The
14 recorded passes thus result in 9 passes for evaluation. Using this approach expands the
evaluation coverage of the steel cutters from 15% to 55%, M-1/2” titanium from 17% to
86%, M-1” titanium from 28% to 83% and R-1/2” from 38% to 79%.

System evaluation begins at pass three to guarantee some history for all evaluated passes
and because the first passes can be trivially labeled. There are two exceptions to this. First,
the longer cutting passes seen in the R-1/2” cutters led us to skip only the first pass in

our evaluation. Second, several of the M-1/2” cutters do not include data for the early
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Table 3.6: Mapping from “known” to inferred test labels: WORN (1), NOT WORN (0),
unlabeled (-), not used in evaluation (x).

Cutting Pass Number | 1 |2 |3 |4 |5 |6 |7 |89 ]10|11 (12|13 |14

Known Binary Labels | 0 | - | - | -|-|-|-|-1-]10] - - - 1

Inferred Test Labels x|x|0|0]0]0]|0O|0O]O0O]O0|x|x|x]|1

cutting passes. Since the first recorded passes are actually in the middle of the cutter’s
life, classification is no longer trivial. For these cutters, all passes which can be assigned an
inferred test label are included in evaluation.

The number of cutters in each test set, the number of passes of recorded data, the
number of passes with explicitly hand-measured wear levels, and the number of passes used

in performance evaluation are shown in tables 3.4 and 3.5.

3.5 [Evaluation Metrics

The three primary outputs of our system are the quantized wear labels W;, wear confidence
P(worn) and a remaining life estimate for each pass. The evaluation metrics used for these

different outputs are described here.

3.5.1 FEwvaluation of quantized wear labels

In chapter 5, we describe our approach to increasing the number of cutting passes with
quantized wear labels W; for use in training. While it is beneficial to use these estimated
wear labels in training, it is not possible to use them in system evaluation. Attempting
to evaluate system performance using only those passes with known wear labels would
reduce the number of test cases below an acceptable level for meaningful results. Therefore,
evaluation of the output wear labels begins with a mapping of the wear labels W; to a binary
WORN or NOT WORN designation. The mappings for each data set are shown in tables 3.2
and 3.3. When evaluating the accuracy of the confidence output P(worn), we consider a

cutter to be WORN if P(worn) > 0.5. In an actual installation it is up to the operator to
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define the threshold of P(worn) to use in a decision to retire a cutter. Although all passes
recorded for a cutter are classified, the evaluation techniques described here are only applied
to those passes marked for evaluation (section 3.4) after mapping the quantized wear labels
W; or the confidence estimate P(worn) to the binary WORN vs. NOT WORN labels.

As in past work in tool-wear classification [8, 9, 10], we use accuracy as one metric to
evaluate the performance of the binary wear labels. Since there are two types of classification
errors, false alarms (Type I) and missed detections (Type II), we also give ROC curves for
selected systems. In actual use, it is the missed detections which result in costly damage
to the part being machined and are several orders of magnitude more expensive than false
alarms. However, excessive false alarms result in the operator ignoring the wear estimates

from the classifier.

3.5.2  FEwaluation of the wear confidence output

In addition to using the accuracy metric described above when evaluating the P(worn)
output, an additional metric is needed. A system which assigns a very high P(worn) to a
pass which is actually NOT WORN should be considered to have lower performance than one
which, while also considering the pass to be WORN, assigns a lower P(worn). The normalized
cross entropy metric (NCE) used in speech recognition applications [24] provides this ability
to discriminate between systems. The normalized cross entropy metric evaluates the amount
of information contained in the output of the classifier rather than simply the accuracy of

the classifier labels:
H(C) - H(C|X)
H(C)

NCE = (3.6)

where H(C) is the cross entropy inherent in the system and H(C|X) is the cross entropy
which remains after the information contained in the observation X is added.? Let C; = 0

represent NOT WORN and C; = 1 represent WORN. The cross entropy computed from the

*Note that the terms in the NCE calculation are cross entropies, since the expectation uses the empirical
distribution of the test set and the probabilities P; and P(worn|z;) are estimated based on the training
data.
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prior distributions of the two classes is
1 [
H(C) = - Z} Cilog Py 4 (1 — C;) log Py (3.7)
i=
where n is the number of passes in the test set, P; is the relative frequency of a WORN label
in the training set and Py = 1 — P;. The cross entropy after the output of the classifier is
added, H(C|X), is determined using equation 3.7 after replacing P; with P(worn|z;) and
Py with P(not worn|z;); where z; is the predictor used by the GLM for pass i; (chapter 6).
1 [
H(C|\X)= - Zl C;log P(worn|z;) + (1 — C;) log P(notworn|z;) (3.8)
i=
For numerical stability, probability estimates are constrained to be always greater than e
and smaller than 1 — ¢, where ¢ = 10710,
We use the following approach to evaluate the statistical significance of the P(worn)
measure for competing classifiers. Let P represent the wear confidence for pass ¢ from
system “a” and P? represent the wear confidence for pass i from system “b”. The separation

(i) between the estimate from systems “a” and “b” for pass i is;

] B - PP for Pass label = worn
" PP — P* for Pass label = not worn
We treat the ¢; values as samples from a Gaussian distribution, assuming a zero mean
under the null hypothesis that the two systems have the same performance. We then

determine the mean and standard deviation of Q and use a standard t-test to check our

hypothesis that system “a” is better than system “b”.

3.5.83 FEwaluation of the remaining life output

The evaluation of the remaining life prediction differs from the other system outputs in that
the estimates for ALL passes are included. Since we know the total life for each cutter,
we can infer the remaining life at all times in terms of the number of passes until the first
time a pass is labeled as WORN. It should be noted however that training of the model for
remaining life and evaluation of the results depends upon a fundamental assumption which

may be in error. We assume that the first pass explicitly labeled as WORN is the actual end
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Table 3.7: The average life of the cutters in each of our data sets measured in number
of cutting passes. The number of passes used in the MSE-End metric for remaining life
prediction.

Data Set Average Life | MSE-End
Steel 1/2” 12 6
Steel 17 8 4
Titanium M-1/2" 23 11
Titanium M-1" 8 4
Titanium R-1/2” 4 4

of the cutter life. In reality, the cutter may have reached this threshold at the previous pass
or even earlier.

We provide two quantitative measures of the performance of the remaining life predictor;
the mean squared error (MSE) and the MSE-End. The MSE metric compares the assumed
“actual” remaining life to the predicted remaining life at the end of each cutting pass.
The value reported is the average error on a pass by pass basis for all cutters in the test
set. While remaining life is instructive at all stages, its performance near the end of life
is the most critical. During our testing, we developed remaining life predictors which had
good average performance but never indicated that a cutter had reached its end of life. To
highlight this performance, MSE-End reports only the average error seen during the last
half of the average life for the cutters in the particular data set (table 3.7).

In addition to these quantitative measures, plots of the “actual” and “predicted” remain-
ing life can provide insight into the performance of the remaining life predictor. Looking
at plots of representative cutters is what led us to add the MSE-End metric to our tests.
A flawed end-point assumption may cause an offset in the remaining life prediction which
would result in poor MSE and MSE-End performance. Inspection of the remaining life
plot would provide an indication of whether the predicted remaining life is decreasing as

expected.
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Chapter 4

SINGLE-RATE DYNAMIC CLASSIFIER

Until recently, only static classifiers have been used for tool-wear applications [6, 7, 8,
9, 14]. Feature vectors representing an entire cutting pass or drawn from some portion of a
pass were collected, and classification was posed as a binary problem of determining whether
these features were generated by a cutter which was WORN or NOT WORN. In reality, cutter
wear is a dynamic process. Cutters move from being new to progressively greater levels of
wear, and the feature vectors during each cutting event change as the cutter moves through
the workpiece. Figure 4.1 shows log energy as a function of time; first for a pass associated
with a tool that is NOT WORN followed by a pass from the same cutter when it is WORN.
It is clear that the feature values depend upon the stage of the cutting pass, and also that
the relationship between the features from different stages within a pass are an indication
of wear.

Knowledge of the level of wear in a previous pass can reasonably be expected to improve
the accuracy of classification of features from the present pass. Our studies and the work of
others such as Thangaraj and Wright [21] have shown that flank wear increases gradually up
to a point and then accelerates toward the end of the tool’s life. A sudden increase in flank
wear in the early stages is less likely than a gradual increase. Including this information
in the decision between two wear levels can be expected to help prevent false alarms. This
chapter describes our work with a dynamic classifier which exploits the information in the

dynamic characteristics of milling tool wear.

4.1 Previous Work

While the majority of classifiers applied to the tool-wear problem have been the static
binary systems described in section 2.3, some have begun to treat the problem as a dynamic

process. Wu et al. [6] included three levels of wear, slight /medium/severe in their classifier,
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Figure 4.1: Total log energy profile during two cutting passes. A NOT WORN steel cutting
pass is followed by a pass from the same cutter when it is WORN.

demonstrating that they recognized the progressive nature of wear. However, they still
treated the wear levels as unrelated conditions. Heck and McClellan [10] attempted to use
the progressive nature of wear to their advantage by choosing a dynamic rather than static
classifier to monitor drill wear. Thirteen features drawn from power and force sensors were
used in a 5 state HMM to classify progressive levels of wear. Both the feed rate and RPM
of the drill were changed during testing and the system achieved an overall binary wear
classification accuracy of 85%. However, there was no attempt to relate the five wear states
to an actual estimate of wear and dynamics within a cutting event were not modeled. Our
classifier models both the dynamics of cutter wear and the dynamics within a cutting pass.
Each wear level HMM state corresponds to a range of wear on the primary cutting edge,
allowing us to produce a quantized estimate of cutter wear.

Whereas Heck and McClellan used HMMs to represent the long time scale of tool-wear,
HMDMs can also be used to model dynamics at a finer time scale. Owsley et al. [25] and

McLaughlin et al. [26] used HMMs in tool-wear monitoring to represent time variation on
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Figure 4.2: Tool-wear system block diagram.

the short time scale of transients observed during cutting. Once transients were identified,
the vector time series for each transient was classified as having been generated by one
of three HMMs representative of transient classes which appeared related to the level of
tool-wear. Since training and test data was unlabeled, a WORN/NOT WORN performance
evaluation was not possible. While we are interested in short time scale events, our work

does not include analysis of the structure of individual transients.

4.2 System Architecture

Our classifier is divided into three serial modules; (figure 4.2). The first processes the
raw accelerometer output to generate a series of feature vectors Y;. The second stage is
either the single-rate dynamic classifier described here or the multi-rate dynamic classifier
described in chapter 7. Both dynamic classifiers are tasked with tracking the progressive
characteristics of tool-wear. The single-rate dynamic classifier processes a series of n feature
vectors, {Y1,Ys,..., Y.}, where Y; = {y;1,...,yir} is the length-T time series data from pass
1. For each pass, the classifier provides as output the wear label, W; and the probability
of each of the wear labels given the feature data P(W;|Y?). Note that the wear label
decision and posterior probability is based on the whole history of cutter use, which we
abbreviate as Y? = {Y7,...,Y;}. The final bank of modules consists of the generalized
linear models (GLMs) described in chapter 6. The particular GLM used depends upon the

desired outcome prediction.
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4.3 HMMs Used to Model Wear and Pass Level Dynamics

A Hidden Markov model (HMM) is a stochastic model of a process that has piecewise
stationary regions, where the time evolution of the non-stationary behavior can be charac-
terized in terms of an unobserved discrete Markov chain. Hidden Markov models are useful,
in general, for problems where there are temporal dynamics. As already pointed out, they
have been used in tool monitoring applications to capture the progressive increase of wear in
drilling [10] and detailed temporal dynamics of milling transients in signals from the early,
middle, and late portions of a tool’s life [20, 25, 26].

We model the dynamic characteristics of the metal cutting process at two different levels:
the wear on the primary cutting edge, as in [10], and the different stages of a cutting pass.
The models at both levels are constrained by the physical behavior of the process. We
assume that cutter wear increases monotonically. We also note that with some materials,
every pass has entry, bulk, and exit stages while with others, one stage of a cutting pass is
indistinguishable from another.

The continuous progression of wear from sharp to dull is treated as a left-to-right Markov
process. The number of states used corresponds to the number of wear levels selected for
the particular experiment. Evaluations performed with data from the cutting of steel and
the Series-B titanium tests are divided into five levels labeled A-E (figure 4.3). Series-C
tests with titanium add an “excessive wear” state and extend the Markov process to six
wear levels A-F. When classifying titanium cutters in the Series-A experiments, the reduced
ending wear threshold requires only three states. The range of wear on the primary cutting
edge associated with each of these wear states is listed in tables 3.2 and 3.3.

The dynamics associated with different stages of cutting or nosy/quiet periods within
an individual cutting pass are modeled with an HMM. In general, HMMs [27] assume that
a series of feature vectors (observations) Y = {yi,...,yr} can be thought of as outputs of
hidden (or unobserved) states S = {s1,...sr}. Assuming that the states are discrete and

Markov and that the observations are conditionally independent given the current state,
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Figure 4.3: The progressive nature of the metal cutting process is modeled as a left-to-right
Markov process constrained to only allow increasing levels of wear. For materials with a
WORN threshold of approximately 0.010” of flank wear, five or six states are used.

then the probability of the observations is given by

T

P(Y) = ZP(Ya S) = P(y1|81)P(31) Hp(yt|3t)P(3t|3t—l)- (4-1)
S t=2

The HMM is characterized by the observation probability distributions b;(y:) = P(y¢|s; =
J), the state transition probabilities a;; = P(s; = j|s;—1 = %) and the initial state probability
mj = P(s1 = j). At each clock time ¢, corresponding to a new feature vector, the state is
updated based upon the transition probability a;;. Once a transition to state j is made, a
feature vector y; is produced according to the probability distribution b;(y;). The output
distributions for the HMM states are described by either a single Gaussian or by a mixture
of multiple Gaussians b;(y) = E,?/Izl cjkN1jk, Xjx] where M is the number of mixtures, ¢;j
is the mixture weight and A is the normal distribution with mean f;; and covariance Xy
associated with state j and mixture component k. In this work, diagonal covariance matrices
are used.

Once the number and topology of HMM states is chosen, the distribution parameters
are learned from training data using the Baum-Welch algorithm. Here the topology is
determined in part by the physical nature of the process as introduced above and in part
by experimentation, as described further in section 4.4. Analogous to the use of HMMs
in speech recognition, classification of wear level consists of finding the best alignment of

feature vectors to HMM states via the Viterbi algorithm, which finds the most likely state
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Figure 4.4: The progressive nature of the metal cutting process is modeled at two different
levels. Progressive wear is modeled as a left-to-right Markov process constrained to only
allow increasing levels of wear. The progress of a cutter through a single cutting pass is also
modeled as a left-to-right process, composed of sequences of HMM states.

sequence using dynamic programming. The index of the final state points to the wear level.

4.4 HMM Topology

Prior to using the selected feature vectors to train the HMM model parameters, an HMM
topology must be chosen to model the dynamics within an individual cutting pass. In our
investigations we find that the optimum topology changes when the workpiece material
changes from steel to titanium.

Monitoring wear when cutting steel we find that within each wear level, the feature
vectors recorded when the cutter first enters the workpiece (entry), behave differently than
those recorded when the tool leaves the workpiece (ezxit), which are both different from
those collected during the bulk of the cutting pass (bulk), as illustrated in figure 4.1. This
observed ordered progress of a cutter through the workpiece is modeled as a left-to-right

Markov process with each stage represented using an HMM (figure 4.4). A cutter is allowed
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to remain in any of the three stages of a cut or it may transition into the next. Skipping
stages or moving backwards is not allowed. The HMMs for the three stages are concatenated
to form a single HMM network for a pass. While the chosen topology constrains the structure
of a cutting pass there is no constraint on the duration. Cutting passes may be shorter than
one second or as long as desired with no requirement that successive passes are of equal
duration. When cutting titanium, this left-to-right process within a cutting pass is not
present and the topology of the HMM representing a cutting pass is modified accordingly.
We begin with the investigation of various topologies to capture the entry/bulk/exit behavior
of cutting steel.

Within the different stages of a pass, it is possible that an ergodic state process (ef-
fectively a mixture distribution) may be more appropriate than a left-to-right topology to
capture the irregular occurrence of events such as chipping. For that reason, we explore
various HMM topologies, trading mixtures for sequential states in different positions and
testing different numbers of distributions. For steel, the best performance was obtained with
nine Gaussians per pass, and the four different cases of this size are shown in figure 4.5. In
topology #1, only a single state with a 9-Gaussian mixture distribution is used per pass,
equivalent to the topology used by Heck and McClellan [10]. In topology #2, the three
stages of a pass are modeled with a single state, each having a 3-Gaussian mixture distribu-
tion. Topology #3 imposes a strict linear time progression within each of the stages, using a
single Gaussian output distribution per state. Topology #4 combines these structures using
the three state/single mixture topology for the entry and ezit stages and the less constrained
one state/three mixture topology for the bulk stage.

The various cutting pass topologies are evaluated on the steel training cutters using
three-fold cross validation models (section 3.4). Model parameters are trained using labels
assigned by the algorithm using Viterbi labeling with no rotation (chapter 5). The best
performance is obtained by modeling the detailed temporal dynamics at the entry and
exit stage, but imposing no ordering constraints during bulk cutting (topology #4). Since
a mixture model is expected to be appropriate when modeling transient events, another
way of interpreting this result is that while the model must reflect the transients during

bulk cutting, the slow time scale phenomena are more important at entry and exit stages.
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Figure 4.5: HMM topologies investigated to model an individual steel cutting pass.
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Table 4.1: Performance (percent correct) of four different topologies evaluated on the steel
CV/Train data set. All topologies use nine Gaussian distributions per wear level.

Topology Cross Validation Accuracy
Chance 89.0%
#1: 1 state, 9 mixtures 89.0%
#2: 3 states, 3 mixtures each 87.3%
#3: 9 states, single Gaussian 92.7%
#4: T states, 3-mixtures in center state 96.4%

This balance between long and short time scales is consistent with intuitions gained from
inspecting energy contours of cutting passes.

Inspection of the feature vectors for titanium suggest that it might not have the left-
to-right behavior seen in steel. To test this hypothesis, we evaluate three different HMM
topologies for the M-1/2” titanium cutters. The first is topology #4 found to have the
best performance when used with steel. The second is topology #1 which uses the same
number of free parameters but is a single state with nine mixtures. When used with steel
this single state/multi-mixture topology gives performance no better than simply labeling
all passes as NOT WORN (chance). Finally, we investigate a single state, four mixture model.
Topologies with a single state and multiple mixtures outperform the topology intended to
model a cutting pass with recognizable left-to-right progression, (table 4.2). This is the
topology used in HMM testing during the Series-A experiments on the M-1/2” titanium
data set. It is interesting to note that a topology with “chance” performance on steel is the
optimum for titanium and the optimum topology for steel results in “chance” performance

on titanium.

4.5 Training HMM Model Parameters

Learning the single-rate model parameters begins with training based on the known Boeing

labels. These preliminary models are then refined using all training data and the EM
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Table 4.2: Performance (percent correct) of four different topologies evaluated during the
Series-A titanium experiments. The left-to-right topology selected for steel is evaluated
against topologies better suited to model transient behavior.

Topology CV | Test
Chance 85% | 83%

7 states, 3-mixtures in center state | 85% | 84%

1 state, 9 mixtures 95% | 94%

1 state, 4 mixtures 95% | 94%

algorithm as described in chapter 5.

4.5.1 Training known label models

The specific steps used to train models using only those passes hand labeled by Boeing are
outlined below. When a particular HTK tool is used for a step in the model training it is

indicated in parentheses: e.g. (HCompV), (HInit), etc.

1. Specify an HMM topology which defines the number of model states but uses only a

single mixture for each state.

2. Calculate a global mean and variance for the data from all known passes of the training
cutters. A value of 0.01 times this global variance is used as the minimum variance

allowed for any output distribution in the final model (HCompV).

3. Create data files containing only those feature vectors from the known cutting passes.
Create a label file which assigns each pass its Boeing label but does not attempt to

partition the data into “enter/bulk/exit”

4. When the number of states per pass (n) is greater than one, partition each pass into

n equal duration segments. Combine all corresponding segments for passes with the
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same wear label and calculate a mean and variance to initialize the wear level models

(HInit).

5. Set the transition probabilities a;; so that staying in the present state or moving to
the next are equally likely. Set a;; for moving backwards or skipping states within a

pass to zero.

6. Use Viterbi alignment to assign each feature vector to one of the model states. Use
this aligned data Y to update model parameters A including transition probabilities
and output distribution parameters for each state. Repeat Viterbi alignment and
model updates N times or until the change in P(Y'|\) < 0.0001 (HInit). For our work
we use N = 20.

7. Update the model parameters from the previous step using Baum-Welch re-estimation.
Each wear level model is updated individually using only the known passes which have
been assigned that label. There is no attempt to string together multiple consecutive
passes. Repeat Baum-Welch re-estimation N times or until the change in P(Y'|\) <
0.0001 (HRest).

8. If a state in the HMM is expected to have more than one mixture, add one additional
mixture to that state. An additional mixture is formed by splitting the mixture with
the greatest mixture weight into two. Each of the new mixtures is assigned half of
the original mixture weight and the new means are defined to be the mean of the
unsplit mixture perturbed by plus or minus 0.2 standard deviations (MU). Repeat
the re-estimation of the previous step and continue splitting mixtures until the desired

number of mixtures is reached.

At this point we have wear level models in the desired topology including multiple

mixture states trained on only those passes specifically labeled by Boeing.
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4.5.2  Updating models using both labeled and unlabeled data

Once preliminary models have been trained as described in section 4.5.1 the model param-

eters are updated using all of the passes in the training set rather than just those passes

with known labels.

i

ii.

iii.

1v.

Create feature vector files which begin and end with passes which have been explicitly
labeled by Boeing. If the first cutting pass is not known, create a file which begins
with the first pass and ends with a labeled pass. For example, the first pass of steel
cutter sl is labeled “A”. Pass #15 is labeled “C” and pass #17 is labeled “D”. Two
training files are created for s1, passes #1 - #15 are put into the first and passes #15
- #17 are put in the second. The first pass for titanium cutter ti6 is unknown. The
only known label is a “C” for pass #5. If ti6 were used in training, a single file would

be created containing all five passes for ti6.

Create a lattice defining the network of possible paths connecting the known label
on the first pass in the training file to the known label on the last. Incorporate the

constraint of only allowing increasing wear (section 5.2)

Concatenate the models for the wear levels defined by the lattice for each training
file into a single composite HMM. Run Baum-Welch re-estimation updating only the

model means and variances and not the transition probabilities a;; or A;;. 1

Using the final models from the previous step, perform Viterbi alignment of the feature
vectors from all passes for each cutter. Constrain the possible network of models to
begin and end with the known Boeing labels. Using the resulting labels on all passes,
determine the wear level transition probabilities A;;. In the M-1/2” data set, the data
for some cutters does not include early passes. The average life of the M-1/2” cutters

is 23 passes. We make a manual adjustment to the A;; values just determined to

!The version of HTK used for this step in model training is a modification of the standard HTK toolbox
provided by researchers at Johns Hopkins University. While the implementation did not update transition
parameters a;; these are already well established with the data from the known labels and leaving them
unchanged is not expected to have an impact on the final model performance.
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create three sets of A;; values. We use early A;; for data beginning at pass #6 or less,

late A;; for data beginning after pass #20 and mid A;; for the remaining cutters.

4.6 Classification

Our dynamic classifier can be used for real-time tool-wear monitoring, but because of con-
straints of our test data we choose to evaluate performance by classifying the wear-level only
at the end of a pass. Since our intent is to incorporate the progressive nature of cutter wear
into our classifier, our test paradigm allows the use of all previous data in the classification
of the present pass. Thus, for each pass %, a decision is made on the wear state based on the
full history of observations Y = {Y7,...,Y;} using the Viterbi algorithm. The classification
W; is the ending label corresponding to the most likely state sequence. An unconstrained
Viterbi search is used at each pass, i.e. the decision at pass ¢ is not constrained to have
the same best wear level at pass 7 — 1 as in the previous decision W;_1. This process of
adding the data from the latest pass and finding the most likely wear label continues until
all passes have been classified and evaluated.

A by-product of the Viterbi algorithm is §(z,1)
6(i,1) = argmax log P(Y*, W; = 1) (4.2)
Si

the log likelihood of the observations for the most likely state sequence ending in wear level
[. We use this likelihood to approximate the probability of observing the entire feature
history for the cutter and ending in wear level I, P(Y*, W; = I) ~ 6(i,1). This quantity
is then used to estimate the posterior probability of different levels of wear P(W; = I|Y?)

(using Bayes rule). .
P(Y!,W; =1)

P(W; =1|Y%) = PO

(4.3)

One problem with the determination of §(,1) is that the dimensionality of the observation
sequence in a pass is so large (T = 5000) that the transition probabilities from different wear
states P(W; = l|W,;_1 = k) = Ay, are greatly outweighed by the observation probabilities
P(Y;|W; = 1) and thus have little impact. This does not effect our constraint that wear

be monotonically increasing since transitions representing decreasing wear are given a zero
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transition probability. However, if not corrected, model performance is degraded since
information learned about the typical progression of wear is not properly incorporated in
the wear level decision. A cutter in the early stages of its life is much more likely to remain
in an early wear state or move to the next higher level than it is to jump to a WORN
state. Ignoring this fact when evaluating the steel cross validation data resulted in seven
false alarms. A classifier which used this information had none. To prevent this mismatch
between P(Y;|W; = 1) and P(W; = l|W;_; = k) we modify equation 4.2 to use a weighted
combination of the log probabilities in updating the Viterbi cost at the pass level.

0(3,1) = Jmax log P(Y;, S;) + mlng[(S(i — 1,1 + Xog P(W; = 1|W;_1 =1")], (4.4)

it Wi=

This solution is standard in speech recognition, where the wear-level transition probabilities
are analogous to language model scores (or, word sequence probabilities). The scale factor
A is chosen in rotation testing on the training set to minimize the number of false alarms
without any increase in the number of missed detections. It must be recognized that the
choice of A depends to some extent on the duration of a cutting pass. As the length of the
observation sequence T changes, the relative weight assigned to the wear level transition
probabilities will change. Since our data sets contain cutting passes of equal duration, no

testing was performed to evaluate the sensitivity of A to T'.

4.7 Experiments

Experiments with our single-rate classifier include both steel and titanium features calcu-
lated at both fine and coarse data rates. Results are based upon only the dynamic classifier
and do not include the post processing of the P(worn) GLM. As shown in chapter 6, the
addition of the P(worn) GLM provides a more conservative (and more useful) confidence
estimate than the HMM posterior probabilities presented here. The finer grained output
resolution provided by the GLM also makes ROC plots of the classifier performance more

meaningful, so these are not presented until chapter 6.
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Table 4.3: Performance of a single-rate dynamic classifier (HMM) using energy or cepstral
features to classify the steel data sets. Performance is compared to the chance performance
achieved by labeling all passes as NOT WORN.

Chance Energy Cepstra
Data Set % % | NCE | % | NCE

Steel 1/2” CV 89 96 | -1.43 || 95 | -2.64
Steel 1/2” Test 7 90 | -2.78 || 90 | -2.78

Steel 1” Test 89 94 | -2.67 || 97 | -0.83

4.7.1 Steel HMM classification

The performance of the single-rate classifier on fine-rate steel features is shown in table 4.3.
As a basis of comparison we include the accuracy of a classifier which simply uses the prior
information that most cutting passes are NOT WORN and assigns this label to all passes
(Chance). The accuracy of the dynamic classifier is quite good using either energy or
cepstral features. Using a one-sided Poisson test for statistical significance we can say with
90% confidence that the performance on the steel 1/2” cutters is significantly better than
chance. Because of the limited number of cutting passes in the steel 1”7 test set, making the
claim that the cepstral result is significantly better than chance requires accuracy of 100%.
The troubling observation is that the NCE is negative. When the NCE is negative, the priors
supposedly have more information than the predicted posterior distribution. We know this is
not really the case because the HMM performance is significantly better than chance. What
is happening is that the HMM is giving a biased, over-confident estimate of the posterior
probability, with P(W; = [|Y*) ~ 1.0 for the most likely label and P(W; = I|Y*) = 0.0 for
all others. Such estimates, when wrong, are severely penalized in the NCE measure. The
reason for the high HMM confidence is that the large number of feature vectors (7' =~ 5000)
results in redundant data for classification, i.e. the assumption of conditional independence
of observations is not valid. The second stage GLM described in chapter 6 is intended to

adjust this bias.
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Another possible way to reduce the impact of redundant data is to reduce the data
rate. The topology chosen for the steel cutters suggests that the important activity at the
beginning and end of a cutting pass may be happening at a rate significantly slower than
our fine data rate. While the use of a mixture model during the bulk cutting stage indicates
activity at a higher rate, our fine rate may still be excessive. We present here the results of
the single-rate classifier processing data at the coarse data rate which is % of the fine data
rate. For this investigation we add the auditory and auto-ambiguity features described in
section 3.3.3 to the energy features used at the fine data rate. The results of classification
with these coarse-rate features are listed in table 4.4. Again using the error counting test,
a statistically significant difference over chance at a 90% confidence level requires accuracy
> 96% for the 1/2” CV data set, > 89% for 1/2” test and 100% for the 1” steel cutters.

Energy refers to the same log of the spectrally flattened total energy used as one di-
mension of the fine-rate energy features whose results are reported in table 4.3. This single
energy feature is added to the 8kHz energy dimension and to a single interval or count
auditory feature from either the 8kHz or 4kHz band. Energy, interval and count feature
sets which include delta features are also investigated. In some cases, the addition of delta
features is beneficial. In others performance suffers when delta features are included. The
auto-ambiguity features use the log of non-flattened total energy (AA Energy) combined
with five additional features selected from the auto-ambiguity plane resulting in a six di-
mensional feature vector.

In our fine rate experiments, performance for the 1”7 Test cutters defined both “D&E” to
be WORN. In these results the WORN threshold is defined to be only “E”. This is consistent
with the wear level defined to be WORN for the 1” steel cutters and results in a significant
increase in performance. Imposing the same definition on the best fine rate system using
energy features reduces performance from 94% to 89% which is the same as “chance”.

The results of this coarse-rate classifier are mixed. Feature sets which perform well on
one set of cutters do not generalize as well to others. Delta features are helpful in some
cases and not others. The only clear result is that some information which is present in
the fine rate features is lost when moving to a coarse rate. Even with multiple feature sets

to choose from, we are unable to reach the classification accuracy achieved with fine-rate
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Table 4.4: Performance of a coarse-rate HMM using energy, auditory (Count) and auto-

ambiguity features cutting steel. The use of approximate first derivative features is indicated
by A.

Feature 1/27 CV | 1/2” Test | 17 Test
Chance 89 7 89
Energy + 8Khz Energy 93 90 56
Energy + 8Khz Count 85 94 89
Energy + 8Khz Count + A 98 84 53
Energy + 4Khz Count + A 91 84 89
AA Energy + Auto-Ambiguity 91 74 89

features. The ability of the models to generalize from 1/2” to 1”7 is seriously degraded by
the loss of fine rate details. Simply reducing the data rate is not a solution to the problem
of redundant data seen at the fine rate. In chapter 7 we investigate the effect of combining

both the fine and coarse rate information.

4.7.2  Titanium HMM classification

In our Series-A testing, we investigate the performance of three types of feature sets (ta-
ble 4.5). The energy features are the two dimension log(total energy) with delta; auto-
ambiguity is the five dimension log(total energy) plus five ambiguity plane features; and
the cepstral features are the selected four cepstral features with their derivatives. The wear
related activity at 8kHz seen in the steel data set is not apparent when cutting titanium.
The energy feature set listed in the table includes only the total energy and its derivative.
The performance of the three feature sets is similar on the cross validation testing and
show a statistically significant improvement over chance performance. The auto-ambiguity
features do a much better job of generalizing to the held out test cutters and are the only
one of the three feature sets whose performance is significantly better than chance at a 90%

confidence level. NCE results are not listed for the titanium cutters because again they are



51

Table 4.5: Performance of three different fine rate feature sets used with the HMM classifier
on the Series-A titanium test set. Performance is compared to the chance performance
achieved by labeling all passes as NOT WORN.

Data Set Chance | Auto-Ambiguity | Energy w/ A | Cepstra w/ A
Series-A CV Test 84 95 93 93
Series-A Test 81 93 85 86

negative. While the accuracy of the wear labels W; is quite good, the same difficulty in
confidence prediction seen when evaluating steel, is seen in titanium.

Our HMM classifier trained on only 1/2” steel cutters is able to generalize to the unseen
cutting conditions when applied to 1” steel data. When moving from the M-1/2” titanium
data to M-1” the changes are more extreme. The “noisy/quiet” cutting periods expected
to present problems for our HMM classifier are much more pronounced in the M-1” data
set then they are with the M-1/2” cutters. In addition, the wear level extends up to “D”
and “E” which are unseen in the M-1/2” training data. We therefore do not attempt to
use the classifier trained on the M-1/2” data to classify the M-1” cutters. Rather, the M-
17 data is labeled by a single-rate classifier under the train/test paradigm defined for our
Series-B tests and also a multi-rate classifier. Single-rate classification with both fine and
coarse-rate features is shown in table 4.6. The multi-rate results are reported in chapter 7.
The accuracy of the classifier using coarse-rate features is significantly better than chance.
The classifier using fine-rate features is only significant at an 80% confidence level.

The Series-C titanium tests are our most extreme case of changing cutting conditions.
This data set includes changes to cutting conditions related to the cutter, machining center
and workpiece material. In addition we use data recorded with the two different accelerom-
eters discussed in section 5.1.2. As shown in table 4.6, the single-rate classifier performance
is no better than “chance”. The labels assigned to cutting passes reflect the expected be-
havior of gradually increasing wear but no cutting pass is labeled WORN. The cutting passes

which are WORN are assigned wear labels which reflect wear on the verge of being WORN
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Table 4.6: Performance of the single-rate dynamic classifier (HMM) when processing cepstral
features as compared to the chance performance achieved by labeling all passes as NOT
WORN.

Experiment Series Chance | %

Series-B CV Test, fine-rate features 85 91

Series-B CV Test, coarse-rate features 85 94

Series-C Test, fine-rate features 93 93

Series-C Test, coarse-rate features 93 93

but none are properly classified. It appears that better generalization techniques than those
discussed in chapter 5 are required when the differences in the cutters included in training
and test are as extensive as those reflected in this data set. It is also possible that the cep-
stral mean subtraction used for the R-1/2” cutters removed information indicative of wear.
The average life of the R-1/2” cutters is four passes. Determining the mean for cepstral
mean subtraction with the first cutting pass is analogous to using the first six rather than

the first three presently used for the M-1/2” titanium data.
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Chapter 5

PRACTICAL TOOL-WEAR CLASSIFICATION ISSUES

Moving a tool-wear system from the lab to the factory floor requires consideration of
a host of practical issues which impact the system design. We focus on three of these
considerations in the work presented in this chapter. Systems of practical utility must be
able to generalize to cutting conditions not encountered in training. Model training must
accomodate the limited training data typical of this application. Finally, the system outputs

must be in a form that is useful to and understandable by the human operator.

5.1 Issues in Generalization

A numerically controlled milling machine in a typical industrial work cell changes cutting
parameters for different operations. Some of these changes have been shown to have an
impact on the data generated for classification. In order for a system to be of practical use
in classifying tool-wear, it must be able to deal with these changing parameters. While it
is not necessary that a classifier function under all possible conditions to be of use, it must
not be limited to a single set of milling conditions.

In this section we present our approaches to dealing with changing tool sizes and changes

in transducers, focusing on feature normalization techniques.

5.1.1 Changing cutting conditions

Table 3.1 shows the range of cutting conditions in our test sets. Accommodating these
changes has implications for the feature processing and the classifier model topology. Here
we look at generalizing across changing cutting conditions without a change in the workpiece
material. The problem of changing materials will require some changes to the basic model,

addressed in chapter 7.
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When working with the steel data set, features used to learn the HMM model parameters
are drawn only from 1/2” cutters under one set of cutting conditions. As long as the cutting
conditions in the test set remain the same as those used in training, performance is good.
However, in our initial experiments, when evaluating 1” cutters working under cutting
parameters unseen during training, classification accuracy dropped to 11% when even chance
performance would have been 89%. All passes from the cutters not seen in training were
classified as WORN. With limited processing of the features prior to use in training and test,
we are able to make them more robust across changing cutting conditions. For example,
when using energy features, we normalize the feature vectors. All feature vectors collected
during the first pass of cutter j are used to calculate a mean vector p; for that cutter.
Normalized feature vectors gf(t) = yzj (t)/p; are then calculated for each pass and these
normalized features are used in parameter training and system evaluation. With energy
normalization, classification accuracy on the held out steel test data is comparable for both
1/2” and 1” cutters even though the 1” cutters are not included in the training data. Similar
results are achieved with the cepstral mean subtraction described in section 5.1.2.

The generalization techniques used here allow us to deal with the limited changes to
cutting conditions reflected in our data sets. More extensive changes to cutting conditions
may require more extensive work with the features and/or adaptation of models. The work
being done with auto-ambiguity features by Atlas et al. [3, 17] shows promise of providing

a single feature set which will generalize across different materials and cutting conditions.

5.1.2 Changing feature transducers

Another issue of practical relevance is how to deal with the fact that different transducers
are used during data collection. In the energy features described in section 3.3.1, the
characteristics of the transducer are an integral part of the features calculated. Assuming a
signal z[n] and a transducer with characteristics h[n], the actual data from the transducer
will be y[n] = z[n] * h[n]. The data used for feature extraction after the FFT is then
Y (w) = X (w)H(w). Clearly, the use of a different transducer with characteristics h'[n] will

result in changed features Y’ (w) = X (w)H (w) even if the signal under consideration is the
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same.

This difficulty is common in the area of speech recognition where different microphones
used to record speech are analogous to different accelerometers processing the same vibration
signals. The approach in these ASR systems is to rely on cepstral rather than spectral
features and use cepstral mean subtraction. The cepstrum is the inverse Fourier transform
of the log of the magnitude of the spectrum of a signal®; as such, the product of the signal
and the channel seen in the Fourier domain becomes a sum in the cepstral domain. This
form makes it possible to remove the effects of the accelerometer.

To find the cepstral features,? we begin with the Fourier transform of the accelerometer

signal for the m' window of data,
ym(w) = Fly[n]wm[n]} = X (w)H(w), (5.1)

where wy,[n] is a moving window function. We then take the log of the magnitude of the

spectral features

log [V (w)| = log | X (w)] + log [H (w)| (5.2)

and then transform back to the time domain.

mln] = F~Hlog [Ym(w)|} = F~H{log | Xm(w)|} + F~" {log |H (w)|} (5-3)

= Z[n] + he[n] (5.4)

The resulting cepstral features g,,[n] are simply a linear combination of the accelerometer
signal Z,,[n] and the accelerometer channel h.[n]. Treating the transducer as a linear time-
invariant channel allows us to estimate and then remove its contribution from the feature
vectors. Its contribution to the final signal is estimated by finding the mean of the feature

vectors.

. 1 XN
heln] = I > Gmln] (5.5)
m=1

!This is actually the Real rather than Compler cepstrum. Taking the magnitude prior to the inverse
Fourier transform results in the loss of phase information contained in the signal X (w).

2There are several different ways of calculating the real cepstrum. The Fourier Transform derivation is
simplest for explaining channel compensation; our actual implementation is described in section 3.3.2.
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where N is the number of windows in the region of data used for channel estimation. The

final series of cepstral feature vectors are then

Y= (i1 — he,-. . N — he) (5.6)
ideally removing the contribution of the linear channel.

Extending this approach to compensate for differences in cutting conditions, we calculate
the ilc value on a cutter by cutter rather than transducer specific basis. The first three passes
of each cutter are used to determine the cepstral mean to be subtracted from all of the data
from that cutter. Models trained on only 1/2” steel data using cepstral mean subtraction
are able to generalize to 1”7 steel cutters with no loss in performance (table 4.3). In some
cases the first three passes are not available. When this is true, as in our M-1/2” titanium
data, a global cepstral mean for that accelerometer and set of cutting conditions is used.
This global cepstral mean is determined from the first three passes of all cutters in the
training data.

The ability of cepstral mean subtraction to deal with changing accelerometers is demon-
strated with two 1” cutters from the steel data set. Vibration was simultaneously recorded
with two different accelerometers during cutting with these tools. These are not two in-
stances of the same type of accelerometer but accelerometers with different response char-
acteristics. We train four different single-rate classifiers, one using cepstral features without
cepstral mean subtraction, the second using the same cepstral mean regardless of accelerom-
eter or cutter but dependant on tool size, the third using a different cepstral mean when
the accelerometer is changed and the fourth using a different cepstral mean for each cutter
and accelerometer.

The wear estimates are evaluated by measuring the “delta” between the labels assigned
by the different models, i.e. how different the labels are for each cutting pass. For example
if one model assigns a wear label of “A” and another assigns “C” for the same pass, that
pass contributes a difference of two. There are a total of 28 cutting passes in our evaluation.
If the model using the data from one accelerometer labeled every pass as wear level “A”
and the model from the other accelerometer assigned a label of “E” the delta would be 112.

The total delta for the models using each form of cepstral mean subtraction are shown in
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Table 5.1: Comparison of models trained with features using three different approaches to
cepstral mean subtraction. The models are evaluated on data from two different accelerom-
eters recording the same cutting events. Delta = the sum of the differences in the labels
assigned to the cutting pass data from the two accelerometers.

Cepstral Mean Estimate Delta

Maximum Possible Delta 112

Same cepstral mean regardless of cutter or accelerometer 30

Cepstral mean specific to accelerometer 15

Cepstral mean specific to cutter and accelerometer 12

table 5.1. Using cepstral mean subtraction removes the majority of the errors introduced
by the change in accelerometers. When no cepstral mean subtraction is used, all but the
first pass from each cutter is labeled as WORN. These models are trained using only 1/2”
cutting data. Just as with energy normalization, some type of cepstral mean subtraction is
necessary to generalize from 1/2” to 1”. The proper cepstral mean subtraction also allows

us to deal with the changed accelerometer.

5.2 Training with Sparsely Labeled Data

When learning the parameters of our dynamic wear level models, we would ideally have a
set of training cutters with a wear label assigned to every pass. In practice, this level of
annotation is too costly and not practically available. For example, in the steel data set,
while there are 87 different passes recorded for the six cutters in the training set, only 12
are inspected so that a wear level could be assigned (section 3.2). Limiting training to only
these passes is problematic for two reasons. First, this is insufficient data to properly learn
the model parameters (b;(y), a;;) for each wear level HMM. In addition to this, we need to
define the transition probabilities A;; between our quantized wear levels W;. Missing labels
in the training data forces us to make heuristic estimates of A;; based on our understanding

of the wear process.
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Sparse data is a common problem in many classification applications and various ap-
proaches have been used to include unlabeled data in training. We present here a technique
which makes use of our a-priori understanding of the wear process and unsupervised learning
techniques to make use of all of the data in our training sets. The details of the approach
are developed on the steel data and applied to each of the data sets described in section 3.2.

Since we define wear level A to be the first pass of each tool, we are able to add six
more passes to the labeled data in the steel training set. We refer to these passes as the
18 known labels. To assign labels to the remaining unlabeled passes, we investigate four

different approaches.
e Viterbi, no rotation
e Viterbi, non-voting rotation
e Viterbi, voting rotation
e Full EM, no rotation

The three different alternatives using Viterbi decoding to assign wear labels are com-
pared to an algorithm which treats the missing labels as hidden states. This last approach
corresponds to the Expectation-Maximization (EM) algorithm, so the implementation is a
straightforward extension of the standard Baum-Welch training algorithm for HMMs and
is analogous to multiple-pronunciation modeling in speech recognition.

In each of these approaches, training begins by estimating model parameters using only
the 18 known passes, using the Baum-Welch training algorithm for HMMs initialized with a
flat start.> The mapping of data to the entry, bulk and exit states is learned automatically
via this algorithm. These preliminary models are either used to initialize the EM algorithm
or to assign labels to the remaining data using Viterbi alignment with the constraints
imposed by the known labels and the monotonically increasing nature of tool-wear. More

specifically, the constraints are as follows.

3The term “flat start” is used when the initial model uses the same observation distribution for all states,
which is typically estimated from the full set of data.
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1. The first pass of every tool must be labeled “A” since we define this as the wear level

for a fresh tool and we know that each tool in the training set is sharp initially.

2. We require that known passes cannot change their labels even if the change results in

a more likely fit of the data to the model.

3. Labels can only reflect the same or increasing wear, (figure 5.1).

As an aside, we note that when these preliminary models are used with no constraints
to label all passes for each of the six training cutters, some of the correctly labeled known
passes have their labels changed and other passes are assigned labels which indicate decreas-
ing cutter wear. When using this completely unsupervised labeling, performance degrades
somewhat, as expected.

When applying this technique to data where early cutting passes are omitted, the first
constraint is relaxed to allow the unlabeled cutting passes prior to the first known pass to
be assigned any label reflecting wear less than or equal to the first known label. The second
network in figure 5.1 shows an example of such a case.

To apply these constraints, we first partition the pass data for each cutter into files
bounded by the known labels. For example, one of our steel cutters has known labels of
A at pass 1, C at pass 10 and E at pass 13. The thirteen passes are partitioned into two
files, one containing passes 1 - 10 and the other with passes 10 - 13. The network of HMMs
chosen to label these passes is constrained to begin and end with the known labels.

When using constrained Viterbi with no rotation, the preliminary models trained on
only the known labels are used to label all passes in the training set, including those without
known labels. All passes, including the newly labeled unknown passes, are then used to re-
estimate model parameters and the updated models are used to again assign constrained
labels to the same six cutters. This process of labeling all of the training data and then
using the newly labeled data to re-estimate model parameters continues until labels stop
changing. This approach has the advantage of using as much training data as is available

to estimate model parameters, but the disadvantage that it may converge too quickly to
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Figure 5.1: Lattices used in the training of wear level models. The first lattice shows the
network for the file containing the final three passes of cutter sl in the steel data set which
has a defined label at both the beginning and end. The second lattice shows the network
for the five passes of cutter ti6 from the M-1/2” titanium data set which only has a known
label for the last pass. The numbers on the arcs between wear states indicate the wear level
transition probability.
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a local optimum associated with the initial labeling and is less likely to generalize to the
different cutters in the test sets.

Using constrained Viterbi with a non-voting rotation, the six training cutters are
separated into six different groups allowing us to do 6-fold cross validation labeling. Each
combination uses five cutters for parameter estimation and the sixth is held out for labeling.
Since the passes in the held out cutter which are being labeled are not used in the estimation
of the parameters of the model used for labeling, this approach is expected to generalize
better to unseen test examples.

In both the no rotation and non-voting rotation algorithms, the feature vectors from
pass ¢ are used to train parameters for the HMM corresponding to the selected most likely
quantized wear level W;. This is true even if the probability of another wear state is nearly
as great as the one chosen. The two remaining approaches are aimed at addressing this
problem, by eliminating the data in one case and using weighted counts for alternate wear
levels in the other.

In the constrained Viterbi with a majority vote rotation, the six training tools are
separated into fifteen different train/test partitions. Each uses four cutters for parameter
estimation and holds out two for labeling resulting in each pass being labeled by five different
models. These multiple labels allow us to ignore passes which receive different labels from
different models when re-estimating model parameters. If a pass is assigned the same label
by at least three of its five rotation models, the data from that pass is considered to have a
high enough likelihood of belonging to that wear state to be used in the next re-estimation of
model parameters. If there is not this level of agreement, the data from that pass is not used
in the subsequent re-estimation. It is expected that the slower convergence resulting from
not using passes which do not receive the majority vote in the early iterations of parameter
estimation will avoid local optima.

The standard way to deal with unlabeled data in HMM training would be to treat the
labels as hidden variables and estimate the parameters using the Full EM algorithm, i.e.
find the posterior probabilities of the different wear levels for unlabeled passes and update
parameter estimates using weighted counts. As in the Viterbi solutions, when applying this

technique constraints are imposed so that wear is non-decreasing.
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Table 5.2: Performance (percent correct) of models trained and evaluated on the steel data
set with different approaches to learning of wear labels.

Train | 1/2” Test | 1”7 Test
Known labels 82 84 89
Viterbi with no rotation 96 94 86
Viterbi with non-voting rotation 93 94 89
Viterbi with majority vote rotation | 87 87 94
Full EM 96 90 94

The performance of models trained using each of these different learning techniques is
shown in table 5.2. Each approach which uses unlabeled data in training shows a perfor-
mance improvement over the system trained with only the known labels. As expected, the
performance improvement on the 1/2” test set increases as more cutters are used in the
re-estimation of model parameters. (Note that the majority vote rotation does not use
all available training data which may explain the lower performance on the 1/2” test set.)
However, for the Viterbi solutions, a significant improvement on the 1/2” cutters is offset
by a performance decrease when generalizing to the 1” cutters. The EM model training has
both the advantage of using the maximum number of cutters for parameter re-estimation
and generalizability. This technique is used to estimate model parameters for all results

reported in this work.

5.3 Secondary Processing for Human Operators

tool-wear monitoring has been the focus of much promising research over the last two
decades. However, to date no practical cutting tool condition monitoring system has been
developed [28]. The non-linear, time-variant nature of the machining process [29] makes it
difficult to model. Signals from sensors are noisy and dependent upon changes in cutting
conditions. Attempts to use automated systems as the sole arbiter of the decision to continue

using a cutting tool or replace it have resulted in operators turning the classifier off or
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Figure 5.2: The quantized wear estimate W;, wear confidence estimate P(worn) and the
remaining life prediction for two cutters from our steel and titanium test sets. The plot on
the left shows the three outputs for a steel 1”7 test cutter classified with a single-rate HMM.
The plot on the right is from an M-1/2" test cutter classified with a single-rate HMM.

ignoring it.

The system described here is intended not to replace the machinist on the factory floor
but to become a part of the decision process by providing useful information about the state
of wear on the cutting tool. A practical consideration in the design of such a system is what
types of output information are useful. We provide three different outputs for the operator
(figure 5.2).

At the end of each cutting pass our system generates a wear label which indicates that
the average wear on the cutter is within a defined range. This is used in two ways by the
operator. Cutter wear tends to progress gradually in the early stages and then accelerate
toward the end. A wear label indicating that the cutter is still in one of the early stages
indicates that close supervision is not necessary. As the wear label approaches the threshold
of wear desired for the particular operation, the machinist can more closely monitor the
cutting and decide when to stop machining with this cutter. Providing multiple wear labels
prior to that designating a WORN tool allows the machinist to monitor the rate of wear
as well as the latest wear estimate. If the operator notices that the wear of a particular

cutter is moving through the wear levels at a greater rate than expected, this is a cue that
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something unexpected is happening.

The wear label just described is the classifier’s “best guess” about the wear on the cutter.
Sometimes the selected label is the only reasonable fit of the data and the confidence in the
label being correct is high. In other cases, multiple labels may be possible choices for the
data being evaluated. Rather than simply giving the operator our “best guess” we provide
a confidence in the cutter having crossed the threshold of acceptable wear, P(worn). The
operator may then choose to continue cutting with a tool which has been given a WORN
label if the confidence in the cutter actually being WORN is low. Alternately, if other factors
such as the cost of the part being machined warrant, the cutting may be stopped prior to
reaching a WORN label if the confidence in the cutter being WORN has reached a sufficient
level.

Finally we provide an estimate of the remaining useful life for the present cutter. As
with the wear label, this indicates when close supervision is necessary and also indicates
when cutter wear is not progressing as expected. Unlike the wear label which may remain
the same for several cutting passes, this output indicates a decrease in the remaining useful
life even if the estimated wear label remains the same.

The determination of the quantized wear estimate W; was described in chapter 4. In
chapter 6 we describe our approach to finding the P(worn) wear confidence estimate and

the remaining life estimate.



65

Chapter 6

SECONDARY PROCESSING

The three serial modules in our tool-wear system are shown in figure 4.2. Feature
extraction is discussed in chapter 3. The single-rate classifier or multi-rate classifier used in
the second module are described in chapter 4 and chapter 7 respectively. The final module
generating either a confidence in the probability that the cutter is WORN, or a prediction of

the remaining life is discussed here.

6.1 Confidence Estimate of WORN Classification

Both the single-rate and multi-rate classifiers generate a quantized wear estimate W;.
This quantized estimate can be made more continuous by using the posterior probabili-
ties P(W; = [|Y'?) to determine the probability that the WORN threshold has been exceeded,
P(worn). However, the redundant data in these first stage models result in an overconfi-
dent and unrealistic confidence estimate. A second stage consisting of a generalized linear
model (GLM) is added to help with the overconfident output (or, bias) in the posterior
probabilities of the first stage. A GLM is chosen because the sparse training data requires a
model with a limited number of parameters. A vector of GLM parameters or predictors,
x; is used in a logistic regression to calculate
i

P(worn|$,~) = m

(6.1)

The selection of the predictor x; used here is described below. Once the GLM has been
trained using predictor features and known WORN vs. NOT WORN labels from the training
set, the same logistic regression is applied to predict the P(worn|z;) for test passes.

Our GLM is implemented with the S-Plus statistical analysis software [30]. Specifying
the GLM requires selection of the features which will be used as predictors z; and training

the regression coefficients 8. The vector of features used in the GLM may contain both
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numeric and factor entries. A factor is a discrete variable which represents values from
some specified set of possible levels. The wear label W; € (A, B, C, D, E) is an example
of a factor. When a factor is used, the single entry is expanded into a set of binary variables
each acting as an indicator function representing the presence or absence of one of the
possible levels. During training, a regression coefficient is determined for each of these
binary factor variables.

Using the steel data set, we investigate four different predictors tried individually and
in combination. The first uses only the categorical label selected to be the most likely for

each pass, W;. Since this is a five level factor feature, its model uses the regression

Bz =Bifa+ Pofp + Bsfc+ Bufp + BsfE (6.2)

where the factors f; = 1if W =11 € (A,B,C,D,E) and 0 if W +# 1. The second predictor
is a vector P; of the probabilities P(W; = I|Y*) for each of the five wear labels I. The
third predictor is again the most likely wear level but using a numeric representation w;
(Table 3.2), which requires only a single regression coefficient. The fourth predictor is the

ratio £;: .
maxe vy P(Wi =1,Y")
maxle{w} P(WZ = l, YZ) ’

i.e. the likelihood of the most likely WORN class over the most likely NOT WORN class.

L; =log

(6.3)

The set of labels for the WORN case depends on the particular test: Wy = {D, E}
Wriseriesa = {C},Wriseriess = {E}, and Wriseriesc = {E,F}. L; changes sign when
the most likely label changes from WORN to NOT WORN, and its magnitude increases with
increased certainty of the WORN vs. NOT WORN decision.

Table 6.1 shows the performance of these GLM predictors. Using W alone or with P
has a negative impact on accuracy even though it results in an improvement in NCE. Using
either @ or L restores the pre-GLM accuracy and gives the desired improvement in NCE.
The difficulty with W and P is probably due to the larger number of free parameters which
must be trained for these factors rather than numeric predictors. For this data, where the
HMM posterior probability estimate is near 1 or 0, P is essentially an indicator vector that
is redundant with W and introduces too many degrees of freedom for robust generalization.

NCE performance using L is better than that with @ for both diameter cutters in the steel
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Table 6.1: Performance of different predictor variables used to train regression coefficients
in the P(worn) GLM: W is the categorical wear label, & is the numeric estimate of wear,
P is the vector of wear probabilities and L is the likelihood ratio.

Steel 1/2” Test | Steel 1”7 Test
Features | % NCE % | NCE

no GLM | 90 -2.78 94 -2.67

W 71 -0.33 72| -0.89
W, P 71 -0.33 72| -0.89
@ 90 |  +0.58 | 94| +0.25
@, P 90 +0.50 94 | -0.28
L 90 | +0.63 | 94| +0.62
@, L 90 | +0.65 | 94| +0.57

test set. While using both £ and & together give a slight NCE improvement on the 1/2”
test set, we choose the simplest predictor set giving comparable performance. £ is the single

predictor for our P(worn) GLM.

6.1.1 Interpreting NCE

A major difficulty in applying statistical solutions to the problem of milling tool-wear is
the limited amount of labeled data for training and system evaluation. Past work in this
area has often been limited to using data from only one or two different cutters. The data
provided by Boeing is extensive compared to what is generally discussed. However for a
solution based upon statistical modeling, the amount of data is very small. In addition to
the problems caused for training, the limited number of examples in our evaluation data sets
raises questions of statistical significance when we are reporting accuracy results. Since we
make use of the NCE metric to ameliorate some of these difficulties, we need to understand
its strengths and also its shortcomings.

The NCE metric is expected to fall between zero and one. When P(worn|z;) = 1 for the
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WORN passes and P(worn|z;) = 0 for passes which are NOT WORN, NCE = 1. If we were
using entropy in our calculation, the conditioned entropy H(C|X) could never be less than
the entropy H(C) and the lower bound of NCE would be zero. However, since we are using
a cross entropy, it is possible to have the NCE take on negative values. The P(worn|Y?)
taken directly from the classifier output or the P(worn|z;) from the output GLM is not
bounded by the P(worn) calculated from the labeled training data. A bias such as that
seen in the output of the single-rate HMM results in P(worn|Y*) estimates of 1 — € or e.
Siu and Gish [24] have demonstrated that the NCE metric is very sensitive to estimates
such as these which are very near the tails of the distribution. Using these =~ 1/0 values for
P(worn) on our steel CV data set, we get NCE = 1.0 when all of the labels are correct.
Inserting a single error changes the score to NCE = —0.215. The solution proposed by
Siu and Gish is to throw out these instances with low probability which they considered
“outliers”. Since these “outliers” constitute virtually all of our data, this is clearly not an
option.

The wear confidence GLM pulls the overconfident estimates of the first stage HMMs and
MHMMs away from the tails and makes the NCE metric more indicative of performance.
This metric is useful but must be interpreted cautiously. In our experiments with the
titanium Series-C cutters, our classifier accuracy was no better than chance. However the
output of the wear confidence GLM gave NCE = 0.88. This unexpectedly good performance
was because all cutting passes were assigned a low P(worn). Since there are many more
NOT WORN passes, the bad performance on the WORN passes is not sufficient to impact the
NCE. In all of our reporting of NCE results, we also make frequent use of ROC curves and

histograms to demonstrate the performance of competing classifiers.

6.1.2 Steel single-rate experiments

The results of the single-rate classifier using energy features reported in section 4.7.1 are
repeated in table 6.2. Two additional columns have been added to indicate the accuracy and
NCE performance after processing by the GLM. As can be seen, the accuracy is unchanged

but the NCE has been dramatically improved. As seen in figure 6.1, the P(worn|Y?) prior



69

Table 6.2: Performance of a single-rate HMM using energy features to classify the steel data
set with and without the use of the second stage P(worn) GLM.

Chance HMM HMM & GLM
Test Set % % | NCE | % NCE

Steel 1/2” CV 89 96 | -1.43 | 96 +0.49

Steel 1/2” Test 7 90 | -2.78 | 90 +0.63

Steel 1”7 Test 89 94 | -2.67 | 94 +0.62

to the second stage GLM is approximately 1 or 0 for each cutter. One effect of the GLM is
to make this overconfident P(worn|Y?) from the first stage more conservative which results
in the improved NCE.

The range of values for P(worn|z;) introduced also makes it possible for the operator
to effect system performance by adjusting the threshold corresponding to a WORN cutter.
As indicated in figure 6.2, changing the WORN threshold for steel 1” test cutters from 0.5
to 0.74 would reduce the false alarm rate without a change in missed detections and result
in an improvement in accuracy from 94% to 97%. Providing P(worn|z;) as an output of
the system gives the operator the information to make such a threshold adjustment and
improve performance.

The ROCs plotted for the steel test set, figure 6.3, are another way of showing that
providing P(worn|z;) gives the operator the ability to choose the system operating point.
The ROC for the steel 1”7 test set also demonstrates that, for this data set, the P(worn)

GLM provides better performance at all operating points.

6.1.3 Titanium single-rate experiments

The results of the single-rate classifier using cepstral features reported in section 4.7.2 are
repeated in table 6.3. An additional column has been added for each feature set to include
the NCE performance after processing by the P(worn) GLM. When our only metric was

accuracy, the auto-ambiguity features appeared to give clearly better performance than the
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Figure 6.1: The number of steel 1/2” test cutters at different levels of P(worn) before and
after the P(worn) GLM.

cepstral features (Test = 93% AA vs. 86% cepstral). However, comparing the NCE score
for the two cases shows the cepstral features giving the better performance (Test = 0.188
AA vs. 0.323 cepstral). Looking at the histogram in figure 6.4 adds some insight. Both
classifiers assign one pass which is NOT WORN a P(worn) which is clearly in the WORN
region. Using the auto-ambiguity features, it is possible to reduce the threshold of P(worn)
indicative of a WORN cutter enough to detect six of the WORN passes without adding another
false alarm. The overlap between WORN and NOT WORN passes in the cepstral classification
does not permit this and thus the accuracy is less. However, the cepstral features assign
a higher P(worn) to cutting passes which are WORN, and a lower P(worn) to NOT WORN
passes than is typical with the auto-ambiguity classifier. This behavior is rewarded by the
NCE metric and accounts for the superior performance. Looking at the ROCs in figure 6.5
we see that the cepstral features give better performance on the CV test cutters but the

choice of one system over the other when classifying the Test cutters depends upon the
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Table 6.3: Performance of three different feature sets used with the single-rate dynamic
classifier (HMM) on the Series-A titanium data set. Performance is compared to the chance
performance achieved by labeling all passes as NOT WORN.

Chance | Auto-Ambiguity | Energy w/ A | Cepstra
Data Set % % NCE % NCE | % | NCE
Series-A CV Test 84 95 0.11 93 0.17 93 | 0.45
Series-A Test 81 93 0.19 85 0.18 86 | 0.32

desired operating point. Using NCE, the cepstral features give superior performance. Using
accuracy, auto ambiguity features are the better choice. Since channel normalization is easy
for cepstra, we choose to work with cepstral features. Since auto ambiguity features show
promise of generalizing across changing workpiece materials, efforts to deal with changing

accelerometers should be pursued.

6.2 Remaining Life Prediction

The primary goal within the reach of present research in tool-wear monitoring is answering
the question, “Is it time to replace the present cutter”. One way of formulating this question
is to ask either for a decision about whether the present cutter has exceeded some defined
threshold of wear or to provide a probability of the cutter having passed this threshold.
These options correspond to the quantized wear estimate W; and P(worn) already discussed.
Another way to pose the same question is to ask: “How much more life remains on this

present cutter?” This is the question addressed by remaining life prediction.

6.2.1 Prediction based on average life

One baseline for remaining life prediction assumes the same average life for all cutters under
a particular set of cutting conditions. The remaining life estimate for a new cutter would be
set to this average, and the remaining life would be updated by removing the duration of the

actual cutting time experienced. Figure 6.6 shows this type of remaining life estimate for
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Figure 6.4: The number of Series-A 1/2” test cutters at different levels of P(worn|z;). The
top plot shows the performance of a classifier using auto-ambiguity features and the bottom
indicates the performance of the same classifier using cepstral features.
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Figure 6.5: ROC performance for a single-rate classifier using either auto-ambiguity or
cepstral features on the M-1/2” titanium cutters. The plot on the left shows performance
on the CV Test data set and the plot on the right shows performance on the Test data set.

three of the M-1/2” titanium cutters. In cases where the cutter behavior is “average”, such
as the center cutter in the figure, the prediction is quite good. The average life prediction
for the first cutter in the figure significantly underestimated its useful life. We define the
end of life to be the first cutting pass with a WORN label. Since the first cutter shown in
the figure was used for an additional pass after the first WORN label, the actual remaining
life is negative. The prediction for the third, estimated that the cutter which was actually

WORN still had ten cutting passes remaining. Clearly a better approach is necessary.

6.2.2 Geometric prediction of remaining life

Each cutting pass can be viewed as a binary variable which can take on the value of being
WORN or NOT WORN. The question of remaining life then becomes, “how many passes
before we encounter the first WORN”? The geometric distribution describes the probability
of the first success after a number of trials. The mean of the geometric distribution then
gives the average number of trials before the first success; in our case the average number
of passes at one wear level before the first pass at a higher wear level is encountered.

Assigning quantized wear labels to each cutting pass allows us to estimate the wear
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Figure 6.6: The estimate of remaining life vs. the actual remaining life based upon a constant
average life for all cutters used under a particular set of cutting conditions. Performance is
shown for three of the cutters in the M-1/2” titanium data set.

level transition probabilities used in classification, section 4.6. These wear level transition
probabilities include the probability of remaining at the same level of wear A;; and the
probability of moving to a different wear state A;;. For each wear level we can estimate the
probability of moving to a higher level of wear as 1 — A;;. We then use the mean of the

geometric distribution to estimate the average number of passes at each wear level.

Geometric Average Wear Duration(i) = (6.4)

1— A
The geometric estimate of remaining life for a cutter classified as wear level W; is then
simply the sum of the average duration for wear level 7 and all higher wear level.
k—1 1
Geometric Remaining Life(i) = Z

=i 1— Ajj

(6.5)

where £ is the first WORN label.
The geometric estimate of the same three M-1/2” titanium cutters is shown in figure 6.7.

This is an improvement over an average life prediction. However, the Markov assumption at
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Figure 6.7: The geometric estimate of remaining life vs. the actual remaining life for three
of the cutters in the 1/2” Series-A titanium training set.

the heart of an HMM is one drawback of using the geometric distribution for a remaining life
prediction. The probability of remaining at an assigned wear level A;; is the same each time
a pass is classified as wear level W;. For a remaining life prediction this can be interpreted
as saying that multiple cutting passes at the same wear level do not reduce the cutter’s
remaining life. We know that our wear levels are only a quantized estimate of cutter wear
and that with each successive cutting pass its remaining life is diminished. To get a more
finely tuned estimate of remaining life, we need to use additional information provided by
the dynamic classifier. Just as a GLM was used to estimate the P(worn) in section 6.1, we

use a GLM to combine various predictors to determine an estimate of remaining life.

6.2.3 GLM prediction of remaining life

In section 6.1 we saw how information available from the dynamic classifier could be used
to estimate P(worn) with a GLM. Combining available information into an estimate of

remaining life can again use a GLM or a standard linear model. The classic linear model
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y = BTz + € assumes that € is normally distributed with zero mean and constant variance.
Design of such a linear model consists of finding the best predictors x and learning the
regression coeflicients 8 from training data.

A GLM introduces more flexibility, requiring two functions for its definition. A link
function which describes how the mean depends on the predictors, g(u) = A7z and a
variance function which describes how the variance of predicted value y depends upon the
mean, var(y) = ¢V (u) with ¢ constant. The binomial nature of the P(worn) prediction in
section 6.1 led us to choose a GLM with a binomial link function (equation 6.1). Remaining
life is not a binary process. Design of the remaining life predictor must include the selection
of the best link function as well as the requirement to identify the best predictors and learn
the regression coefficients [30].

We evaluate performance of both a linear model and various GLMs using a preliminary
set of predictors. During selection of the GLM link function we use the Ratio and Pass
Number predictors discussed below. In place of the estimate of the probability of the wear
label used in our final GLM, we use a 1/0 indicator for the known cutting passes. The linear
model is implemented as a GLM by specifying the appropriate link and variance functions.
Regression coefficients are learned from the cutters in the M-1/2” titanium training set
labeled under the cross validation paradigm described in section 3.4.1. Table 6.4 shows
the performance of the linear model and the GLMs from this evaluation. The performance
listed is that achieved by each model using the same set of preliminary predictors on the
CV training M-1/2” cutters . As can be seen, the linear model and the Poisson GLM model
have nearly identical performance. While the Poisson link function is slightly worse when
evaluated with an MSE score, it is a bit better than the linear model at tracking the actual
remaining life near the end of life. However, the Poisson link function does not allow a
prediction of negative remaining life. Using the Poisson GLM would require that we either
floor the minimum remaining life at 0 or remove passes which go beyond the first recorded
WORN pass from the train and test sets. Flooring the remaining life at zero would include
predictor values with more wear than necessary to get to a zero remaining life. This would
tend to make it harder to get to a prediction of the end of life. In actual practice, there

will be times when the cutter is used beyond the WORN threshold and these cases should
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Table 6.4: Performance (MSE = mean squared error) of a linear model and various GLMs
used to predict remaining life of the M-1/2” training cutters.

Remaining Life Model | Link Function | Variance Function | MSE
Linear p=p0Tz var(y) = ¢ 2.72
GLM Inverse Gaussian | pu = (%)1/2 var(y) = p2e 3.37
GLM Gamma u= 5%—36 var(y) = u%e 3.12
GLM Poisson U= ef'e var(y) = p 2.78

be included in our work. We therefore choose to use the GLM which implements a linear
model and proceed to find the best predictor features.

The relative success of the geometric prediction of remaining life makes it a prime candi-
date as a predictor feature in the remaining life GLM. In addition to the geometric prediction

we investigate the efficacy of using it along with the following list of possible predictors.

e Geometric: The remaining life based on wear transition probabilities and quantized

wear level estimate described in section 6.2.2.

e Viterbi Wear Label Ratio (Ratio): The ratio of the log likelihood of the Viterbi path
ending in W; = J to the sum of the log likelihood of the Viterbi paths ending in
W; = K where wear level K represents all labels with greater wear than J. For M-

c c Cth
5 tro and Z2. (Note: this

1/2” titanium,for example, this results in two predictors

is different from the £ feature used for confidence prediction.

e Pass Number (Pass): The number of milling passes experienced by the present cutter
since it was new. Since evaluation is at the end of a pass, the minimum number for

this predictor is 1.

e P(W; = I|z*): The probability of the present pass being wear label [ for all [ €
(Quantized Wear Labels)
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Figure 6.8: The estimate of remaining life vs. the actual remaining life for three of the
cutters in the M-1/2” titanium data set using the geometric prediction, P(W; = [|Y") and
Viterbi Wear Label Ratios.
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Each of the predictors listed above except for P(W; = I|z*) are available outputs of
the dynamic classifier. Additional GLMs are trained to estimate P(W; = I|z’). When our
objective is the probability of a WORN label, we choose predictors which are the ratio of the
likelihood of the WORN label to the likelihood of the NOT WORN. Here we are interested
in the probability of a particular label W;. The predictors used in these wear label GLMs
are the ratios of the Viterbi path likelihood value for each wear label to the sum of the
likelihoods of all other wear levels.

o P(W; =1,Y")

(6.6)

determined with the data only from those passes with known labels. A separate GLM
is trained for each wear label | € (Quantized Wear Labels). These GLMs are used to
determine the P(W; = l|z;) for all cutting passes, which are then used as predictors in the
remaining life GLM. No attempt is made to normalize the wear level probabilities so that
they sum to one since these are used as predictors in another GLM and not directly as
probabilities.

Plotting the remaining life using each of these predictors gives a qualitative assessment
of performance. The present pass number when used alone never predicts a remaining life of
less than five passes. The Viterbi wear label ratio also has trouble getting below five passes
and tends to predict life in plateaus rather than ramps. P(W; = I|z%) does well at getting
down to zero life but underestimates remaining life during early cutting. As already seen,
the geometric predictor results in discrete steps rather than a continuous slope. Table 6.5
lists a quantitative assessment of the performance of these predictors used separately and
in combination.

The best performance on the M-1/2” titanium cutters is achieved using a six dimension
predictor feature vector consisting of the two Viterbi Wear Level ratios,LBLfAﬁc and ﬁ—g, the
three P(W; = l|z;) values and the Geometric prediction of remaining life. Because of the
additional wear labels W; in the M-1” data set, the remaining life GLM in the Series-B tests

uses a ten dimension feature vector.
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Table 6.5: Performance (MSE = mean squared error) of various combinations of predictors
in a GLM used to predict remaining life on the M-1/2” training cutters.

Pass | Ratio | P(W; = I|z*) | Geometric | MSE
X 3.84
X 3.98

X 2.83

X 3.75

X X 3.53
X X 2.86
X X 2.72

X X 2.78

X X X 2.66

X X X X 2.72

6.3 Experimental Results of the Remaining Life GLM

The performance of the remaining life GLM is demonstrated both by the quantitative met-
rics, mean squared error over the entire cutter life (MSE), and mean squared error over the
last half of average cutter life (MSE-End) described in section 3.5 and by plots of actual vs.
predicted remaining life. When a plot is shown, all cutters in the data set being evaluated
are included.

The cutters in our data sets included average life ranging from four to twenty-three
cutting passes (table 3.7). As a basis of comparison, we show the error of a prediction based
on this average life when reporting the performance of our GLM remaining life prediction.

The remaining life prediction for the same Series-A titanium cutters used to estimate
the GLM regression coefficient 3 (figure 6.9), shows good performance. However, the plots
in figure 6.10 show that the remaining life GLM has difficulties generalizing to the cutters

in the test set. However, the test set includes cutters with a wider variation in cutting life
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Table 6.6: Performance of the remaining life GLM for the Titanium Series-A and Steel data
sets compared to performance using the average life for each test set. The reduction in the
error rate using the GLM remaining life over a prediction based on average life is shown in
the columns on the right.

Average Prediction | GLM Prediction | Reduction in Error
Test Set MSE | MSE-End | MSE | MSE-End | MSE | MSE-End
Titanium Series-A Test | 6.28 6.84 4.45 4.51 29% 34%
Steel 1/2” Test 3.41 3.71 3.10 3.54 9% 5%
Steel 1”7 Test 7.30 5.75 3.36 4.11 54% 29%

than seen during training. The remaining life GLM still improves MSE performance by
about 29% (table 6.6).

The same features selected when evaluating the M-1/2” titanium cutters are used as
predictors in the remaining life GLM for our steel cutters. When the data set is changed,
training cutters from the new data set are used to train a new remaining life GLM. In
chapter 4 we presented results of a single-rate classifier using several feature sets. The
results presented here use the outputs of the single-rate classifier processing cepstral features.
Looking at figure 6.11, we again see a problem when attempting to generalize from the 1/2”
training cutters to the cutters in the 1/2” Test set. The 1/2” test set contains several cutters
with life much shorter than the average for this data set. The GLM predicts excessive
remaining life for these cutters and only shows a 9% improvement over an average life
prediction. The steel remaining life GLM actually generalizes better to the cutters in the

1” test set showing an improvement over the average prediction of 54% (figure 6.12).
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Figure 6.9: Series-A titanium CV test cutting. Actual remaining life vs. the remaining life
predicted by our remaining life GLM is shown for the six cutters in the CV test set.
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Figure 6.10: Series-A titanium Test cutting. Actual remaining life vs. the remaining life
predicted by our remaining life GLM is shown for the seven cutters in the Series-A test set.
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Figure 6.11: Steel Test cutting classified by a single-rate HMM processing cepstral features.
Actual remaining life vs. the remaining life predicted by our remaining life GLM is shown
for the eight cutters in the steel test set.
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Figure 6.12: Steel 1”7 Test cutting classified by a single-rate HMM processing cepstral fea-
tures. Actual remaining life vs. the remaining life predicted by our remaining life GLM is
shown for the four cutters in the steel 1” test set.
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Chapter 7

MULTI-RATE HMM

As we have said several times, wear events occur at different time scales. Rather than
choose to work at one scale or the other, we present here a classifier working at multiple
data rates. This multi-rate dynamic classifier processes two separate channels of data.
Each channel is expected to capture a type of wear phenomenon. The lower rate, or coarse,
channel is expected to track more slowly varying features indicative of the flank wear,
noisy/quiet periods due to BUE or the profile of a cutting pass; enter/bulk/exit. The
second higher rate, or fine channel captures the chipping which occurs at all wear levels but
is believed to occur more frequently in higher wear states. We refer to this multi-rate HMM

as an MHMM.

7.1 Models for Multi-Rate Processes

HMMs have long been used to model parallel streams of single-rate feature vectors by as-
suming independent observations in a single HMM. More recently, work has been done
using multiband [31, 32] or factorial HMM (33, 34, 35, 36] systems. In this section, we
consider different variations of HMMs that can be used to characterize multi-rate pro-
cesses, specifically loosely coupled and state-coupled models. The approach described here
is applicable to more than two simultaneous data rates. However, we have limited ourselves
to two to simplify the implementation and because we believe this to be reasonable for the
application. In the coarse-rate HMM, the length N sequence of coarse-rate feature vectors
Ye = {yf,...,yS} from each cutting pass is assumed to have been generated by one of a
variable number of wear level HMMs indicative of progressively greater levels of cutter wear.
The number of quantized wear levels depends upon the material under test.

The length T' sequence of fine-rate feature vectors Y/ = {y{c yenn ,y%} is assumed to

have been generated by states in a fine-rate HMM which are either wear-level dependent
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or shared across all wear levels. Being in a particular fine state is intended to represent
the presence or absence of a transient. Since our hypothesis is that groupings of transients
are related to wear level, the activity in the fine rate HMM is also indirectly related to the
average cutter land wear.

In a loosely coupled model, parallel classifiers processes features from D distinct data
streams {Y!,...,YP}. Each classifier determines P(Y?, S?), where S* represents the state
in the i** wear process, independently of the other data streams. A second stage such as a
neural network or generalized linear model, F, is used to combine the outputs of the parallel

classifiers into a final classification or class probability:
P(Y,8) = F{P(Y',8"),...,P(Y?,sP)}. (7.1)

Figure 7.1 shows a loosely coupled model processing two data streams with feature
vectors at different data rates using a graphical model representation. The graphical model
shows the statistical independence between the random variables in the coarse and fine
HMMs. Figure 7.2 illustrates a hypothetical state topology for such a system. Dupont
and Bourlard [37] demonstrated a performance improvement when a similar loosely coupled
multi-rate topology was used to capture both phoneme and syllable level information in a
speech recognition system. In tool wear monitoring, loosely coupled systems have been used
primarily for combining features at the same rate for different sensors [18].

A second state-coupled model for a multi-rate classifier couples the parallel HMMs during
the calculation of P(Y,S) rather than combine the independent probabilities after deter-
mination of P(Y,S) for each HMM. In this model, the present state S} in data stream
i is dependent not only on its own feature and state sequence {yt,... vt s, ..., st} but
also upon the features and states in one or more parallel HMMs. Figure 7.3 modifies the
graphical model of figure 7.1 to show the dependence of the classifier processing features at
a higher rate on the classifier processing features at a slower data rate. Considering these
to be the fine and coarse data rates of our multi-rate classifier, we can write the probability

of the present wear state S as,

P(S) = P(8°)P(S7|5°) (7.2)
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Figure 7.1: Graphical model indicating the independence of the classifiers processing the
two data streams. The final state shows the dependence of the final output on the two
parallel classifiers.
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Figure 7.2: An example of a loosely coupled MHMM combining two independent HMMs
via a secondary GLM. The coarse-rate HMM in the figure represents one of the coarse-rate
wear-level dependent HMMSs shown in figure 7.4
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Figure 7.3: Graphical model indicating the dependence of the fine-rate state sequence on
the present coarse state.

It is possible to make both the transition parameters and output distributions of one
classifier conditionally dependent upon another. In our state-coupled MHMM, the fine-
rate output distributions are dependent only upon the present fine-rate state. However,
the transition parameters are conditioned on both the fine and coarse state. Figure 7.4 is
analogous to figure 7.2 in illustrating the state topologies. Making the assumption that
states are discrete and Markov and observations are conditionally independent given the
current state (within each feature stream), we write the probability of the observations as

PY) = Y PYe89> P/, S5
Se Sf

= > (P(yfISE)P(Sf) II P(?/ﬁ\SZW(S%IS%J) .

Se n=2

> (P<y{ |s7)P(s11s$) TT P(wd Is))P(s]s]_1, )) . (7.3)

Sf t=2

Liet al. [38] describe a similar system for image classification. In their work, the two feature
streams are at the same data rate. The transition probabilities of the HMMs used to classify
one block of an image are dependent upon the state of HMMs classifying adjacent image

blocks.
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In our state-coupled multi-rate classifier we model the dependence between the two
feature streams explicitly via the dependence of the fine-rate state on the state of the
coarse-rate HMM. Since classification involves finding the maximum likelihood wear state S
which includes both the fine and coarse rate features, both data rates influence the selection
of the most likely wear label W;. Suppose that transient behavior is captured by s,{ =1
and during training it is seen that transients are more likely to occur at higher levels of
wear. When finding the most likely state sequence for the fine rate features, the probability
of transitioning to s; = 4 will be greater when the most likely coarse-level state represents
a higher wear level. In this way, the coarse features effect the state sequence in the fine-
rate HMM. A sequence of fine-rate features indicative of transient behavior will lead to the
selection of a coarse-rate state representative of a higher wear level to increase the likelihood
of the fine-rate data. Thus the features at both rates influence the state sequence in both

HMMs.

7.2 Multi-Rate Topology

In the loosely coupled MHMM presented here, the outputs of the fine-rate and coarse-rate
classifiers discussed in chapter 4 are combined in the P(worn) or Remaining Life GLMs
described in chapter 6. For our loosely coupled multi-rate topology, we use a three state
ergodic coarse-rate HMM and a fourteen state ergodic fine-rate HMM. The choice of the
number of states in the fine-rate classifier is based on our desire to have a similar number of
free parameters for comparison with our state-coupled multi-rate classifier, described next.
The topology for the state-coupled MHMM takes one of two forms. Just as in the loosely
coupled MHMM, the coarse-rate HMM models each wear level with a different three-state,
single-mixture ergodic HMM. In the first of the state-coupled MHMM topologies, we assume
that the energy or frequency content of transients changes with changing wear level. The
fine-rate HMM is a five state single-mixture ergodic HMM whose model parameters are
wear-level dependent.

In the second state-coupled MHMM, we assume that the differences in transient behavior

over the life of a cutter are limited to the rate of transients rather than changes in the energy
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Figure 7.5: Fine rate topology shared across all wear levels W;.

or frequency content. In this case, we use the same five state HMM to represent transients
at all wear levels W;. Four of the five states in the fine rate HMM use single mixture output
distributions intended to capture transient activity. The fifth state is a multi-mixture model
with the number of mixtures equal to the number of wear levels (figure 7.5). This multi-
mixture state is intended to model the “normal cutting” or “non-transient” activity which is
expected to be wear level dependent. In both models of the fine-rate features, the transition
probabilities between states are dependent upon the coarse-rate state. In the topology
which ties “transient” states across wear levels, the mixture weights for the observation
distributions within the “normal cutting” state are not dependent upon the coarse-rate

state.

7.3 Multi-Rate Decoding with State-Coupled Models

Classification of cutter wear requires that we determine P(W; = I|Y7) for each of the
wear labels | € (Quantized Wear Levels) (equation 4.3). We determine this recursively

for each additional pass of data. Here Y7 = (Y1,... ,Y;) represents all passes up to and
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including the pass being classified. Y, = (y{ ye e ,y%,yf, ..., Y% ) denotes both the fine and
coarse observation sequence from a single pass consisting of T fine rate and N coarse rate
observations. The forward algorithm is used to determine P(Yy|W}, = [) for each wear level
[. The wear level transition probabilities A;; learned during training determine P(W; =1I).

What is needed at this point is the details of the forward algorithm for our MHMM. We

introduce the quantity

at(ja‘]) :P(ylf,"'ay{ayfa"'ay;asg :jasz = J) (74)

which is the joint probability of both the fine and coarse observations up to time ¢, the fine
state s/ at time ¢ being j and the coarse state s¢ being J. The fine rate features which are
indexed t = 1,2, 3, ... and the coarse features indexed n = 1,2, 3, ... are synchronous so that
n = 1 aligns with t = 1 and n = 2 aligns with ¢t = M + 1. In general, the two data streams
synchronize at t = (n — 1) M + 1. We use lower case to denote the fine state and upper case
to denote the coarse. The joint probability a;(j,J) can be updated recursively; however,
the update is different depending upon whether or not the value of ¢ corresponds to integer
multiples of the coarse rate index n. At these times #, the coarse state is updated and a
coarse feature is generated. At all other times, only the fine rate changes state and emits
an observation. We develop the forward algorithm in detail for the more complex case of
changing ¢t and n and then present the simplified expression which is valid when only the

fine-rate state is changing. When t = (n — 1)M + 1,n =1,2,3, ...

(i, ) =SS Plyl,.ul vt il =ds8 = 1,s] = 4,55 = J) (7.5)
=YY Pyl e sl =085 =1)e
P(sf =j,s8 = Jlyl ..oyl 1, 6 ye sl =55 =1)e
Pyl yelyl, .ol vt v sl =idst = Is] = j,s5 =)

(7.6)

The first term in equation 7.6 is simply a;—1(i,I). The second term describes transition
probabilities. Using the Markov state assumption that the next state in both the coarse and

fine HMMs is independent of the observation sequence, we can simplify the second term in
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equation 7.6

P(S{ :jasfz = J‘y{a"'7yg.—1ayfa"'7yfz—1’3{—1 :ias;:z—l :I) =

P(s{ = j, s = Jlsl_ =i, s = 1). (7.7)

In our state-coupled implementation, the present state of the coarse HMM is only dependent
upon its previous state and may be expressed as af;. The fine state is conditioned both on
the previous fine state and upon the present coarse state. We will represent the fine state
transition probability as a{j(J ). Therefore, equation 7.7 is simply azfj(J )ag ;.

If we assume that both the fine and coarse observations are conditionally independent,

given the fine and coarse states respectively, the third term in equation 7.6 becomes

P(ygaymy{w"7y{715yfa"'7y767,—1587{71 :iaSZ—l = I,S{ :jasvcz = J) =
Pyl|s] = j)Pyglss = J) =

bf (4! )05 (v1)- (7.8)

Using these terms in equation 7.6 and adding the case where there is no coarse state change

gives

S a6, Dl (as bl (b5 (ye) fort=(n—1)M +1,n=1,2,3,...

at(ja J) =
> o—1(i, J)aij(J)bf(y,{) for all other ¢

The final terms required in the determination of the forward algorithm for the multi-rate
HMM are P(s§ = J) = 7§ and P(sf = j|s¢ = J) = 7T]J-C(J). Using these terms the initial
value of « is

a1 (4, ) = ] (J)m5b] (1 b5 (45) (7.9)
7.4 Multi-Rate Parameter Estimation for State-Coupled Models

Just as in the single-rate classifier, the fine-rate output distribution b; (y{ ) and coarse-rate
output distribution b5 (yg) may be described by a single Gaussian or by a mixture of multiple
Gaussians. The model parameters listed below must be determined during model training

in order to implement the decoding described in section 7.3.
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Ty The mean of the coarse-rate output distributions

X5 The covariance of the coarse-rate output distributions

u;-r The mean of the fine-rate output distributions

E;-c The covariance of the fine-rate output distributions

5 The coarse-rate initial state distribution

7r]f (J) The fine-rate initial state distribution conditioned on the coarse state
a$y The coarse-rate state transition probability

a{j(J ) The fine-rate state transition probability conditioned on the coarse state

The desired model parameters 6, are those which maximize the probability of the state
sequence and the observations, log P(S,Y|#). Since the actual state sequence for each
pass of training data is hidden, we must deal with all possible sequences and maximize
Eflog P(S,Y|#)]. This is an iterative process using the Expectation-Maximization (EM)
algorithm. During the E-step we compute Q(0|6?)) = E[log P(S,Y|0)|Y,0®)] where 6®)
is the estimate of the model parameters at the p” iteration of the EM algorithm. In the
M-step we update the model parameters, 8%+ = argmaz,Q(6]6®).

The calculations for the E-step and M-step require oy (74, J) introduced in the forward al-
gorithm developed in section 7.3, and three additional terms, 5;(4, J), y:(j, J) and &(4, J; k, K).
We use the backward algorithm to determine 3;(j, J), the probability of the observation se-
quence from ¢ + 1 to the end ¢t = T given that S; = j,J. This quantity is also calculated
recursively initializing Br(j,J) = 1 Vj, J; which is just the probability of a sequence fin-
ishing. The steps used in the determination of 5(j,J) depended upon whether or not
t=(n—-1)M+1,n=1,2,3,..., just as we saw with a(j, J).

3 31 B (i, Daly (Dag b (yl b5 (06 11) fort=(n— )M +1,n=1,2,3,...

i B (4, )ag; (N)b; (Yiy1) for all other ¢

The state occupancy, (4, J), which describes the probability of the system being in a
particular state (j,J) at time ¢ given the entire sequence of observations, is calculated using
both the forward and backward results:

P(y{a"'ay’lf“ayfa'--ay?\hsg :j’s% = J)
P(y{a--'ay{“ayga-“ay]cv)

’yt(ja J) =
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at(ja J)ﬁt(]a J)

= =W 7.10
Yixror(iI) ( )

Finally, we need the probability of seeing a particular state transition at time ¢:
&), T3k K) = P(s_y = j,s 1 = Jysf = k,si, = KIYF YN ,00)  (7.1)

where Y. f is the fine rate sequence of length 7" and YV is the coarse rate sequence of length

N. For the two cases of ¢t described for previous terms we can write this as:

ai=1(5,7)al (K)a$ . bf (u] b5 (95,) B (k. K)

& (4, I3k, K) = >3, el fort=m—1)M+1,n=12,3,..
faf
&, Kk K) = o110, KE): Z(: Z;((ft[)ﬁt(k K) for all other ¢
I

7.4.1 The E-step

The observations Y used in parameter estimation consist of multiple (r) sequences of fine
and coarse-rate features drawn from the cutting passes in the training data set. To cal-
culate Q(H\H(p)), we assume that the training sequences are independent, and calculate
Ellog P(S%,Y%0)|Y",6%)] where S* and Y? are the state sequence and observation sequence
for a single training pass i. We then use these individual results to determine the update

for this iteration:

Q1?)) = XT:E[logP(Si,Yi\H)\Yi,B(p)] (7.12)
= ZZZ% 3, J)(log (! (1)) + log(r5))
+ZZZZZZ§ § I3k, K) (log al, (K))

+ Z S SN €L, ik, K) (log a5 k)

ilt’QJK

+ZZZZ% 3, 7) (log b ()

zltly

+ Z 3, J) (log b5 (32)) (7.13)

i=1¢'=1 J
where # indicates those values of ¢+ when there is a change in the coarse state. S is the

state sequence corresponding to the i-th cutting pass and Y are the observations from
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this pass. The probability of state occupancy, 74(j, J) and the state transition probability,
€i(4,J; k, K) now have the superscript i to indicate that they are conditioned only on the

observations from the i-th pass.

7.4.2 The M-step

Looking at equation 7.13 we see the three primary model parameters: the initial state
probabilities (7rJf (J) , ©%), transition probabilities (a;fk(K ) , a5k ) and output distributions
(bj-c (y{ ), b5(y5)) in separate summations. We can therefore treat the maximization of each
case separately.

The ML estimates of the initial state probabilities are found by imposing the constraints
that -, ﬁf(J) =1 and ) ;75 = 1, taking the derivative of the @) function and setting it
equal to zero. Solving these equations we get
Sk E)

iz 2710, K)

(7.14)

and .
erzl Ek ’7{ (ka K)
et Ej >0 J)

Prior to taking the derivative of the @ function with respect to the transition probabil-

(7.15)

T =

ities, we impose the constraints that >_, a;-ck(K) = 1Vj and that } a5, = 1VJ. Solving

we get
o _ X Xty ¥ S Gy Jymy M)
JM = , —
L S Y Yo Sk (G, Ty m, K)

where ¢ indicates those values of ¢ when there may be a change in the coarse state; and

(M) = 1 Sty Xy 60, Jim, M)
o1 Tty g Lk &1, Tk, M)

where L; is the length of the fine observation sequence for the ith cutting pass. For time

(7.16)

al

Jm

(7.17)

t # t where there is no change in the coarse state, £(j, M;m, M) is used in place of
& (4, J;m, M).
For our case of Gaussian output distributions we determine the values for x®*+%) to be
L; i (7 i
::1 Et’:l Ej ’7;1 (]a J)yf,
Li L (.
i—1 priity Zj Yy (4, )

G = (7.18)
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and

i S S G Dl
! o S Y G, )

Finally, the estimates of the covariances for the coarse and fine states are determined

i (7.19)

using the latest estimate of ﬂ; and 15

Li ] . A ~ i ~
1 e XY G D (g — i9) (gt — i5)T

56—
J = T L; i(i J
i=1 Etlzl Ej ')’t/(]a )

(7.20)

and

™M

= : 7.21
=1 EtL:il >3 ) ( )

f T Sl S0 Nl = i) - af)"
J

7.5 Multi-Rate Model Initialization

Accurate classification requires wear level models able to discriminate between the quantized
wear levels W;. Information about the wear level is contained in the feature vectors capturing
transient activity, in the relationship between feature vectors from different portions of a
single cutting pass and in the relationship between feature vectors drawn from cutting passes
at different wear levels. In our single-rate classifier we model the dynamics of the feature
vectors within a cutting pass and across wear levels. In our multi-rate HMM we expand the
model to capture the information contained in the transients.

When training our single-rate models, we make the assumption that all feature vectors
are descriptive of the wear level and/or the stage in a cutting pass being modeled and all are
used in training. In our multi-rate models, we seek to discriminate between different wear
states, changes in the stage of a cutting pass (which may include the difference between
noisy and quiet cutting) and between times when transients are occurring and when they
are absent. When training the coarse-rate models of our MHMM, we again assume that all
of the feature vectors are descriptive of the phenomena we wish to model. Each coarse-rate
feature vector is considered to be equally important in our discrimination between wear
levels, stages of a pass and noisy/quiet cutting. Therefore, all feature vectors have an equal
contribution to the model parameters. Initialization is carried out as has already been

described for a single rate classifier. We will refer to this as Impartial Initialization.



98

When training the fine-rate HMMs in the MHMM our hypothesis is that the feature
vectors descriptive of the transient behavior we wish to model comprise only a small por-
tion of the complete set of fine-rate features. In their work analyzing the transient behavior
of milling, Gillespie and Atlas [17] pointed out that the majority of their ambiguity plane
feature vectors were not indicative of wear. They concluded that measuring wear would
require the detection of “exceptional” feature vectors. To explore this further, they clus-
tered their feature vectors using a VQ codebook which minimized a mean square error
distortion criterion. A single code word accounted for more than 90% of the feature vectors
regardless of the level of wear on the cutter. The frequency of occurrence of the remaining
codewords was related to the level of tool-wear; further supporting the supposition that the
“exceptional” feature vectors were the ones important in classification. Work done with
discriminative training of HMMs is beyond the scope of this dissertation. In the absence
of labeled transient data, we rely on an ad hoc initialization of the transient state output
distributions b;-c (yf ) with only “exceptional” feature vectors to capture the desired transient
behavior. We refer to this as Scarce Initialization.

Once both the coarse and fine-rate HMMSs have been initialized, the output distributions
are re-estimated and the coupling between the coarse state and the fine transition proba-
bilities is learned using five iterations of the constrained EM described in section 5.2. We
investigate two approaches to scarce initialization of the fine-rate HMM output distributions

and compare their performance to models trained using impartial initialization.

7.5.1 Scarce initialization of fine-rate models

One of the five states in the fine-rate HMM is intended to capture the “normal cutting”
behavior at each wear level. When the same HMM is shared across all wear levels, this single
state contains multiple mixtures, one for each wear level. When all of the fine-rate states
are wear-level dependent, this state contains a single Gaussian representative of “normal
cutting” at that wear level. To find the initial output distribution parameters for this state
we train a single-state, single-mixture HMM for each wear level W; using the labeled training

data. For this one state, training uses impartial initialization.
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The remaining four fine rate HMM states are intended to capture transient behavior.
We will refer to the first implementation of scarce initialization for these four states as
the distant mixture method. All of the training data regardless of its wear label is used
to train a single state, nine mixture HMM. These mixtures are compared to the wear-level
dependent “normal cutting” models. The four transient states are initialized with the b;-c (yf )
parameters of the four mixtures which have the largest distance from the “normal cutting”
models. The distance metric used is:
1w

2w i=1

2 (it — )" (e — paa) + (s — 1) 'S (i — poe) (7.22)
where W is the number of wear-dependent mixtures, y; and ¥; are the mean and variance
of the mixture being evaluated as a potential transient model and u; and ¥; are the mean
and variance of the i** wear-dependent mixture model trained with only the labeled training
data.

We will refer to the second implementation of scarce initialization of the four transient
states of the fine-rate HMM as the outlier clustering method. Here all of the training
data, regardless of wear label, is combined into a single cluster. Divisive clustering is used
to partition the data into K clusters. As the value of K increases, the average number
of features in each cluster and the average distance from each feature vector to its nearest
cluster both decrease. If our intent was to find the four clusters which best represented all
of the feature vectors, we would set K = 4 and use the cluster parameters to initialize our
fine-rate models. However, our intent is to find the four clusters which best cover the feature
space. In fact, we are looking for clusters other than those which contain the majority of
the fine-rate feature vectors. Once K clusters have been defined, agglomerative clustering

is used to reduce the number of clusters. The steps in agglomeration are as follows:

1. Calculate all pair-wise combinations of the Euclidean distance between the means of

the K clusters.

2. Combine the feature vectors assigned to the two “closest” clusters and recalculate the

parameters of the new cluster.
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3. Do NOT reassign feature vectors in other clusters even if the newly defined cluster is

now “closer” than its original cluster.

4. Repeat until the desired number of clusters is reached.

Clusters combine with those which are close in feature space regardless of the number of
members in the cluster. The final set of clusters covers the extent of the feature space rather
than attempting to include the majority of the features.

In our work, we continue divisive clustering up to 50 clusters and agglomerate down to
9; just as we choose 9 mixtures for the distant mixture method. Using this combination
of divisive to 50, agglomerate down to 9, we are able to satisfy the additional constraint
imposed on our final outlier clusters that they each contain at least 1% of the total number
of feature vectors in the training data. Preliminary divisive clustering allowed up to 1000
clusters. After agglomeration we were left with several clusters containing less than 0.05%
of the feature vectors. We considered these to be too “exceptional” to be of use.

Once the nine clusters are defined, we apply the same metric used in distant mixture to
choose the parameters of the four clusters which have the largest distance from the “normal
cutting” models. Figure 7.6 shows the initial fine-rate model means for the four transient
states and the five wear level mixture means of the “normal cutting” state derived from the
three approaches to initialization. The outlier initialized states cover the greatest extent of
the feature space. The states initialized by distant mixture are different from those from
impartial initialization but it is difficult to draw any conclusions from the difference.

If our assumption that the energy or frequency content of the transients is not wear-level
dependent is correct, we would expect to see the models for the transient states stay close
together for all wear levels after the EM parameter re-estimation step. Figure 7.7 shows the
fine rate models after five iterations of EM. The four initial transient states and the three
wear-level dependent models for the least worn state “A” and the two most worn states
“D&E” are shown as filled circles. After parameter re-estimation, the five fine-rate states
are again shown for wear labels “A” ”D” and “E”. In some cases we do see pairs of transient
states representing different wear levels. However, the clustering of all wear levels is not

apparent. This indicates that the energy or frequency content of transients may indeed be
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Initial Fine State Model Means
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Figure 7.6: Initial model means for two dimensions of the fine-rate transient states. The
three approaches to model initialization are included: impartial initialization (square), “dis-
tant mixture” (diamond) and “outlier clustering” (x). The filled circles indicate the means
for the five wear-dependent states.
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Figure 7.7: Fine-rate transient states after re-estimation of parameters using all training
data. The plot on the left shows the models initialized with “distant mixture”. The plot on
the right shows models initialized with “outlier clustering”. The shaded circles indicate the
initial model means for the four transient states and the three wear-level dependent states
corresponding to wear levels A,D,E. The five states after parameter re-estimation are shown
for wear level A (square), D(x) and E(diamond).

wear-level dependent. Regardless of the initialization technique, the models move to better
cover the feature space. In many cases, a particular region of the feature space is occupied
by models from each of the wear levels. We cannot conclude from the plots that one region
of the feature space is more indicative of a particular wear level than another. However, not
allowing any change in the output distributions from their initialized values is expected to

degrade performance.

7.6 Multi-Rate Model Experiments

In all of the results reported in this chapter, accuracy performance is based on the binary
mapping of the wear labels W; and the NCE score is calculated using the P(worn) output
of the GLM in the last stage of our system. All multi-rate development experiments are on
the Series-B titanium data set since this exhibits the noisy/quiet cutting which we expect
will benefit from the multi-rate model. The Series-B data uses only a CV test set. The cross

validation makes the accuracy performance reported from the wear labels W; a “fair” test
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since the evaluated passes are not included in the model training. However, the regression
coefficients for the P(worn) GLM are determined using all of the CV cutters. As such, the
P(worn) GLM used for the NCE scores is evaluating the same cutters used in its training.
While this is still an acceptable means to compare the performance of competing classifier
topologies and initialization techniques, performance is expected to degrade when these
systems are applied to held out test cutters. In our multi-rate experiments we review the

following questions:

1. Is it better to use a single-rate or multi-rate architecture?

2. Is multi-rate performance better when the two parallel HMMs are treated indepen-
dently and coupled by a GLM (loosely coupled) or by using the state-coupled model

directly in classification?

3. Which approach to initialization of fine-rate models has superior performance?

4. Are the wear-level-dependent changes in transient behavior limited to rate or are the

energy and frequency content also wear level dependent?

In our work with cutting steel, single-rate classifiers processing fine-rate data outper-
formed those using coarse-rate features. Changing the workpiece material to titanium, we
see that the single-rate classifiers trained and tested under the cross validation paradigm
defined for our Series-B tests show superior performance using coarse-rate features (ta-
ble 7.1). Only the accuracy of the coarse-rate features is statistically better than chance
at a 90% confidence level. The NCE score for the fine-rate classifier indicates that it has
over-confidence problems.

When these two classifiers, operating at different data rates, are combined with a
P(worn) GLM in our loosely coupled MHMM architecture, the accuracy drops below the
level required to claim statistical significance. It should be noted that the difference between
the accuracy of 91% and 94% is one additional missed detection. Looking at the ROC in
figure 7.8 we see that over a range of operating points, the multi-rate classifier does give

improved performance over the single-rate HMM.
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Table 7.1: Performance of single-rate and multi-rate classifiers applied to the titanium data
in the Series-B experiments. NCE performance is determined with a GLM which is trained
on the same CV data set.

Classifier % Accuracy | NCE
Chance 85 -

Single-rate Fine 91 +0.00
Single-rate Coarse 94 +0.11
Multi-rate Loosely Coupled 91 +0.12
Multi-rate State-Coupled 94 +0.31

1k
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Probability of False Alarm

Figure 7.8: Performance of a loosely coupled MHMM compared to a single-rate HMM
processing coarse-rate features.
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When the feature streams at the two data rates are used in our state-coupled multi-rate
architecture, the accuracy remains at the higher coarse-rate level and there is a noticeable
increase in NCE. Using the approach to evaluate the statistical significance of the NCE
measure described in section 3.5 we can say with confidence at the 99% level that the state-
coupled architecture has better performance than either the single-rate coarse HMM or the
loosely coupled MHMM. The state-coupled architecture apparently does a better job of
using the information in the fine-rate data than the loosely coupled MHMM (figure 7.9). In
our choice of a multiplier on the wear level transition probabilities discussed in chapter 4, we
opted to minimize the number of missed detections without any increase in the number of
false alarms. Looking at figure 7.10 we see that setting the P(worn) threshold to 0.5 results
in two errors (two missed detections) for the state-coupled topology. Lowering the threshold
to 0.3 lowers the accuracy since there are three errors (one missed detection and two false
alarms). However, it may be more important to increase the WORN detection from 60% to
80% even at the cost of the two false alarms. Attempting to increase the WORN detection
to the same level for the loosely coupled MHMM requires us to drop the P(worn) threshold
below 0.2 resulting in an unacceptably high twenty false alarms. The state-coupled MHMM
does a much better job of separating the WORN passes from those which are NOT WORN.

In section 7.5 we discuss strategies for initializing our fine-rate models so that they
will capture the transient behavior which we wish to model. As shown in table 7.2, when
the fine-rate models are initialized with all fine-rate data treated equally, performance of
our state-coupled MHMM is actually worse than seen in the loosely coupled architecture
which uses the same “impartial” initialization. Both distant mixture and outlier clustering
initialization attempt to use only “exceptional” features for the fine-rate models. As shown
in figure 7.6, outlier clustering tends to select cluster means which are more exceptional than
those used in distant mixture initialization. Accuracy performance is similar for the two
techniques but the NCE metric shows, with confidence at the 99% level, that distant mixture
initialization is superior to both impartial and outlier clustering initialization (table 7.2).

The histograms in figure 7.11 show that models initialized with distant mixture assign
lower P(worn) to cutting passes which are NOT WORN than is typical with impartial ini-

tialization models. This greater separation between the WORN and NOT WORN passes is
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Figure 7.9: ROC comparing the performance of two MHMMSs. One uses a loosely coupled
topology and the other the state-coupled.

Table 7.2: Performance of state-coupled multi-rate classifiers using three different ap-
proaches for initialization of the fine-rate models.

Initialization % Accuracy | NCE

Chance 85 -
Impartial 91 +0.06
Distant Mixture 94 +0.31

Outlier Clustering 91 -0.01
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Figure 7.10: The number of Series-B test cutters at different levels of P(worn|z;). The
top plot shows the performance of an MHMM coupled via a second stage GLM (loosely
coupled). The bottom plot indicates the performance of a state-coupled MHMM.
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Table 7.3: Performance of coupled multi-rate classifiers using three different approaches for
initialization of the fine-rate models.

bi(t) Wear-Level Dependent | b;(t) Shared Across Wear Levels
Initialization % Accuracy NCE % Accuracy NCE
Distant Mixture 94 +0.31 94 +0.09
Outlier Clustering 91 -0.01 82 +0.03

reflected in the higher NCE score in table 7.2. The superior performance of the distant
mixture initialization is also see in the ROC of figure 7.12.

Once fine-rate models are initialized, five iterations of EM training with all training data
are used to update model parameters. In all cases, it is at this stage of training that the
coupling between the coarse state and the fine-rate transition probabilities is estimated. If
only the rate of transients are wear-level dependent, the wear-dependent transition proba-
bilities should be sufficient to model transient activity. If the energy and frequency content
of the transients are also wear level dependent, we need to allow the output distributions,
initialized with the same y and ¥, to change during training. Figure 7.7 shows the fine-rate
model means at three wear levels after five iterations of EM. As noted earlier, because of the
separation in the wear-dependent model means,we expect worse performance if the output
distributions of our fine-rate models are tied across wear levels. Table 7.3 shows that the
NCE performance of the distant mixture state-coupled MHMM exhibits a statistically sig-
nificant degradation when the transients are required to share output distributions across
all wear levels.

In our presentation of remaining life prediction in chapter 6 we report performance only
on the cutters in our test sets. The test paradigm for the Series-B multi-rate testing only
has cross validation cutters. We include a plot of remaining life for the multi-rate classifier
results (figure 7.13) for information only. No MSE or MSE-End performance is reported

because we are training and testing our remaining life GLM on the same data.
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Figure 7.11: The number of Series-B test cutters at different levels of P(worn|z;). The
top plot shows the performance of an MHMM whose fine-rate models are initialized using
impartial initialization. The plot on the bottom shows the performance when initialization

uses distant mixture.
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Figure 7.13: Series-B titanium CV training cutting classified with the Multi-rate HMM.
Actual remaining life vs. the remaining life predicted by our remaining life GLM.
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The limited data in our Series-B testing makes it impossible to state conclusions to our
research questions with conviction using only the accuracy performance metric. However,
with the histograms, ROCs and NCE scores we are able to conclude that a state-coupled
MHMM using distant mixture initialization gives the best performance on the M-1” titanium
data. We can also see that modeling transient behavior requires both transition probabilities

and output distributions which are wear-level dependent.
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Chapter 8

SUMMARY AND FUTURE WORK

The premise behind the work in this dissertation is that the problem of classifying milling
tool-wear can be viewed as a problem in speech recognition. We borrowed acoustic modeling
techniques developed for the task of automatic speech recognition and adapted them to our
machining application. Different cutters were treated as different speakers. Levels of wear
were viewed as words in a limited vocabulary. Changing accelerometers were treated like
changing microphones. The progression of wear was described by a finite-state “grammar”
(left-to-right Markov process).

In making this connection we opened the door to a two-way flow of information. The
work of this dissertation demonstrated the benefits of applying the powerful techniques
developed for speech recognition to the tool-wear application. Having developed a “speech
type” classifier for tool-wear, we have also set the stage for investigations targeted for
speech systems to be first tried on the tool-wear application. Speech recognition system
are complex enough and training corpora large enough that simple testing requires days
of compute time. The similarity of the tool-wear application and the reduced complexity
allows a quick look at new techniques with experiments that can be run in minutes rather
than days. It is possible that insights learned in the fast turn around application may be
useful.

In section 8.1 of this chapter we review the main contributions of our work and in

section 8.2 we discuss some possible extensions.

8.1 Review of Main Contributions

Evaluation Paradigm At the beginning of our work, there was no standard data corpus,
no agreed upon test methodology or common set of evaluation metrics available for work

in milling tool-wear. In this thesis we have developed a test paradigm which was used here
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Table 8.1: Summary of single-rate HMM classifier performance for both steel and titanium
data sets. The first column indicates the accuracy performance of the “chance” system
using only the prior information from the training data.

Test Set Chance % | %
Steel 1/2” CV Test 89 96
Steel 1/2” Test 7 90
Steel 1”7 Test 89 94
Titanium Series-A CV Test 84 93
Titanium Series-A Test 81 86
Titanium Series-B CV Test 85 94

and by colleagues working on this application task. If approval is obtained to release the
Boeing data to the public, we and our colleagues at Boeing will have established the first
common test corpus for research in milling tool-wear.

A significant part of defining the evaluation paradigm was showing the benefits of using
multiple performance metrics. The results of the experiments reported in chapters 6 and 7
make it clear that the typical accuracy metric used in the past is not sufficient to characterize
the relative benefits of competing systems. The NCE metric, while it also has its limitations,
allows greater insights during classifier development.

Dynamic single-rate classifier

During the development of our single-rate classifier we experimented with various topolo-
gies and training mechanisms. In the process, we identified good design principles for HMMs
used in a tool-wear application.

Using our single-rate HMM classifier, we were able to demonstrate accuracy greater than
90% and good NCE performance on almost all of the steel and titanium test sets (table 8.1).
The data in the Series-B tests includes the noisy/quiet cutting periods expected at the
outset of our research to be a very challenging problem. The 94% accuracy achieved with

our multi-rate classifier on this data set is particularly encouraging.
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Table 8.2: Performance of single-rate and multi-rate classifiers applied to the titanium data
in the Series-B experiments. The performance of both a loosely coupled and state-coupled
MHMM is reported.

Test Set % Accuracy | NCE
Single-rate Coarse 94 +0.11
Multi-rate Loosely Coupled 91 +0.12
Multi-rate State-Coupled 94 +0.31

In our work we used our classifier as a common test bed to compare frequency domain
energy features, cepstral features, auto-ambiguity features and features motivated by human
auditory testing. Those working on other feature sets for this application would benefit from
an existing classifier for feature evaluation. By basing our system on the HTK and S-Plus
software which has seen widespread application, it is possible for other researchers to easily
use our design procedures.

Dynamic multi-rate classifier

During our work on this application we discovered that proper modeling of tool-wear
requires that we process features at different data rates. We were able to demonstrate
that performance improved when a multi-rate rather than a single-rate system was used
(table 8.2). We also showed that a state-coupled multi-rate model gave better performance
than one using a loosely coupled topology.

As with the single-rate classifier, our work identified design principles relating to the
topology and training of a multi-rate classifier. Of particular interest was our work on model
initialization. We showed that the initialization of the models intended to capture transient
phenomena was important, and that the models of transients require output distributions
which are wear-level dependent.

Multiple presentations of output information

The information provided by our system goes beyond that typically provided by a tool-

wear classifier. The typical output of such a system is usually limited to binary WORN or
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Table 8.3: Reduction in the accuracy error on the steel data set when using unlabeled data
in training rather than just those passes explicitly labeled in the training data set.

Test Set Only Known Labels | Constrained Training | Reduction in Error
Steel 1/2” CV Test 82% 96% 78%
Steel 1/2” Test 84% 90% 37%
Steel 1/2” CV Test 89% 94% 45%

NOT WORN labels. Some have extended this recently to indicate levels of wear but do not
connect these levels with an actual range of wear on the cutter as we do with our quantized
wear label W;.

The confidence estimate P(worn) was shown to give a finer grained resolution of tool-
wear. Using the NCE evaluation mechanism with this additional output we are able to draw
conclusions about the efficacy of some of our modeling approaches that would not have been
possible with accuracy alone because of the small amount of data available.

The variability of the milling process makes it surprising that a prediction of future life
would have any success. The demonstrated ability of our remaining life predictor to use a
cutter’s past behavior to update prediction of remaining life is very encouraging.

Practical challenges

Other tool-wear applications such as drilling and turning report on data sets with hun-
dreds of examples for training and test. Until now, the cost associated with collecting
labeled test data for a milling application has hampered the use of statistical inference sys-
tems. Our constrained EM training provides a way to use very sparsely labeled data during
training with an increase in performance as shown in table 8.3.

It is not practically possible to gather the data necessary to train a classifier under all
combinations of cutting conditions expected to be seen in practice. We were able to show
that using feature normalization or cepstral mean subtraction, our single-rate classifier was
able to properly classify cutters being used under cutting conditions not seen during training.

We were also able to expand the challenge of changing cutting conditions to include changes
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to the accelerometers. We showed that cepstral mean subtraction allowed us to use data
from different accelerometers in our training or to classify data from a different accelerometer

than the one which was used to train model parameters.

8.2 Future Work

Future work with our system falls naturally into three main categories: factory floor re-
search, algorithm and design research, and connections to speech recognition.

Factory floor research

The next step for the system described in this work is for it to be installed in the research
facilities at Boeing Commercial Aircraft. This is expected to serve as a transition between
the very controlled environment of the research lab and the less controlled environment of
the factory floor. Past experience leads us to believe that our system will require important
modifications before it is ready to be a standard manufacturing tool. It is difficult to
anticipate the areas which will most benefit from extensions to the present system because
of the high accuracy achieved on the data presently available. However, we are able to
speculate about areas which are likely to cause problems.

In our work, the duration of each cutting pass was a constant within each data set. The
multiplier for the wear level transition probabilities was learned during training and we were
able to treat it as a constant. Moving to variable duration cutting will require a dynamic
treatment of this model parameter and an implementation that allows wear transitions
within a pass.

All of our cutting data consisted of climb-cutting of notches in the workpiece material.
It remains to be seen how well our present pass topology will model changes in the types
of milling operations. We found that changing workpiece material necessitated a change in
HMM topology. If changing cutting operations also calls for a change in topology we will
need a means of selecting the proper model for the desired operation.

In our desire to continually expand the amount of labeled data available for continued
research, we propose the use of the present system in the data collection process. The wear

on a cutter is low, (level “A” or “B”) for most of the usable life. Taking the time to remove
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and inspect cutters for annotation during these portions of their life is not as important as
during the final minutes when wear is more rapid. If the present system were used to alert
the operator when the end of life is near, measurements of wear which are temporally close
together could be done without a significant increase in the time required by evenly spaced
inspections. More labeled data near the end of a cutter’s life where rapid wear begins will
allow better identification of this critical time in the cutter life.

Algorithm and design research

Both the single-rate and multi-rate classifier achieved a 94% accuracy on the M-1”
titanium cutters. The multi-rate showed improved performance using the NCE metric.
However, table 8.4 shows that even the multi-rate classifier has difficulty properly modeling
the titanium cutting. The table shows three of the cutters from the M-1” data set which
exemplify the types of problems seen. The quantized wear labels assigned to cutter ti101
move to a wear level on the verge of being WORN (D) much too soon. The wear labels for
ti103 do a good job of tracking wear up through the middle of life but stop at mid-life even
for a cutter which is WORN. Finally we see a label (A) normally associated with a fresh
cutter in the middle of the life of ti106. The features from the first four passes appear to be
classified properly. However, when pass five is added to the entire feature sequence Y?, the
features from this new pass look so much like a fresh cutter that the maximum likelihood
path through the wear lattice changes its previous decision and labels all five passes as “A”.
We assume that this is the result of a poorly modeled “quiet” cutting period. It appears that
we were not truly successful in modeling the transient activity which we sought to capture
in the fine-rate HMM and perhaps not the pass-level phenomenon we desired at the coarse.
Our approach used an ad hoc technique for model initialization but then used a training
approach based on a maximum likelihood criteria. Work being done with discriminative
training which uses maximum mutual information or minimum classification error may be
more appropriate for this application.

The edge wear we seek to model is actually the accumulation of small wear events.
Adding the ability to model the rate of wear over a specified time increment is likely to
provide improved performance for our system.

It is likely that the features selected to model dynamics within a cutting pass and across
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Table 8.4: Comparison of the known label to the label assigned by the best multi-rate
classifier for three cutters in the M-1” titanium data set. Unknown labels are indicated by

()-

ti1l0l -known | A | x [ B | x |C| x| x D|D
A/B|D/D|/D|D|D D|D

ti103-known | A | x [x | x |C|C|C | x | E
AIA|B|C|C|C|C|C]|C

til06 - known | A [ x | x | x |C | x | x | E
B|IB|C|C|A|E|E|E

wear levels are not the optimum features to model transient behavior. Work should be done
to investigate feature selection for the different time domains.

Connections to speech recognition

Finally, in keeping with our interest in applying speech recognition techniques to the
tool-wear problem, it would probably be useful to apply approaches developed for speaker
adaptation to changing cutting conditions beyond the scope of the techniques already ex-
plored in this dissertation. Conversely, it would be interesting to apply the state-coupled
multi-rate model to speech recognition applications, where the slow time scale might capture
phenomena such as speaker identity.

One of the most challenging problems in tool wear monitoring is generalizing to changed
cutting conditions. While our classifier and generalization techniques show promise, we
expect more work will need to be done. Preliminary work with auto ambiguity features
indicate that they will be able to generalize to different workpiece material. Work should
be done to address channel normalization with these features.

There is a strong connection between the work here and speaker verification. Speaker
verification models are trained with a limited amount of enrollment data and using a single
type of microphone. The models must then be improved with additional data obtained

during use and across multiple types of microphones. Future work in tool wear modeling
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should use advances in speaker verification. Specifically, tool wear monitoring would benefit

from speaker verification in answering the following questions:

e How should data recorded on the factory floor after the tool wear system has been

installed be used to update classifier models?

e How can model transformation techniques developed to handle cell phone to office
phone mismatch be used to transform models trained under one set of cutting condi-

tions to another?

e What channel normalization techniques can be applied beyond cepstral mean subtrac-

tion?
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