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Abstract

Transformation Sharing Strategies for MLLR Speaker Adaptation

Arindam Mandal

Chair of the Supervisory Committee:

Professor Mari Ostendorf

Electrical Engineering

Maximum Likelihood Linear Regression (MLLR) estimates linear transformations of auto-

matic speech recognition (ASR) parameters and has achieved significant performance im-

provements in speaker-independent ASR systems by adapting to target speakers. Evidence

is presented in this dissertation that the performance improvements are not consistent across

target speakers, and 15% show degradation in performance levels, i.e. increase in word error

rates (WER). Robustness of MLLR adaptation is an important problem and solutions to it

are crucial for ASR systems that must adapt to a wide-range of speakers. This dissertation

presents new research directions that address this problem, exploring two aspects of MLLR

transformation sharing using a regression class tree (RCT): the design of RCTs and the

online complexity control of adaptation.

The standard approach for MLLR transformation sharing uses a single speaker-independent

RCT. A new approach is proposed that uses multiple RCTs, each trained using speaker-

cluster-specific data and represents types of speaker variability, determined by an algorithm

that partitions a large corpus of speakers in the eigenspace of their MLLR transforma-

tions. ASR experiments show that choosing the appropriate RCT for target speakers leads

to significant reduction in WER. For unsupervised adaptation, an algorithm is proposed

that linearly combines MLLR transformations from cluster-specific RCTs using weights es-

timated by maximizing the likelihood of adaptation data and achieves small improvements

in WER for several tasks in English and Mandarin. More significantly, distributional anal-





ysis shows that it reduces the number of speakers with performance loss from adaptation

across ranges of adaptation data and WER.

The standard approach for complexity control in MLLR uses only the amount of adap-

tation data from a target speaker. Evidence is presented that this does not produce the

optimal number of regression classes and significant improvements in WER are achieved

using the oracle number of regression classes. A new solution for complexity control is pro-

posed that predicts the number of regression classes in an RCT using speaker-level features

with standard statistical classifiers and achieves moderate improvements in WER. Next,

a more flexible approach is proposed that performs node-level pruning in an RCT, using

node-level features and produces improved robustness of MLLR adaptation.
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Chapter 1

INTRODUCTION

Humans possess sophisticated adaptation capabilities for recognizing and understanding

speech in a range of unfamiliar conditions with a high rate of success. These conditions,

which introduce variability in the acoustic signal of speech, include speakers with foreign

accents, different dialects, physiological conditions that change voice quality, e.g., age, gen-

der or illness, environmental conditions that affect the speech signal, e.g., telephone and

recording channels, room acoustics, etc. The development of algorithms that attempt to

produce similar adaptation behavior has played a key role in the steady progress of auto-

matic speech recognition (ASR) systems from the research laboratory to commercial ap-

plications in real-world situations. At present, ASR systems can be encountered in a wide

range of applications such as automated telephone information systems, command and con-

trol systems embedded in consumer electronics, in-car navigation systems, speech-to-speech

translation systems, automated dictation systems, etc. Though the research community

has devoted considerable effort in developing adaptation algorithms for such ASR systems,

their performance in real-world situations is yet to match that achieved by humans, except

for the simplest applications. The focus of this dissertation is to investigate the limitations

of current adaptation paradigms for ASR and address them by developing new algorithms

that leverage speaker variability and improve robustness of adaptation and ASR system

performance for a range of real-world tasks.

1.1 Speaker Adaptation in ASR

Modern ASR systems have two main components: the acoustic model and the language

model [51, 88]. The research findings presented in this dissertation are focused on the

acoustic model, which are usually based on hidden Markov models (HMM) that use mixtures
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of Gaussian distributions as the state output distributions [4, 5, 88]. For large vocabulary

ASR systems, acoustic models are typically trained using data collected from a large corpus

of speakers. This approach in training helps model the acoustic variation observed in a

large speaker population. Such ASR systems are called speaker-independent (SI) since they

can recognize unseen speakers without undergoing further training. Speaker-dependent (SD)

ASR systems, which are trained using data of a single speaker and thus use a better acoustic

model of that speaker, tend to produce 2-3 times better system performance compared

to SI systems, when both are trained using comparable amounts of data [48]. The lower

performance levels of SI ASR systems is due to the fact that they have to cope with modeling

variability among speakers, typically with no training data from the target speaker. The

goal of speaker adaptation in SI ASR systems is to shift the SI acoustic model “close” to

the true SD model of a speaker unseen in training, and produce improved ASR system

performance.

The adaptation “shift” or transformation of the SI acoustic model is usually estimated

using (adaptation) training data from the unseen speaker. Adaptation strategy refers to the

algorithms used to estimate the adaptation transformation and the subsequent transforma-

tion of the SI acoustic model. Adaptation complexity refers to the number of adaptation

transformation parameters that need to be estimated. A transcription of the adaptation

data is needed to estimate the transformations. If the true transcriptions are available then

the adaptation procedure is called supervised, or if the transcriptions are “guessed” using an

initial hypothesis of the SI acoustic model, then it is called unsupervised. The adaptation

procedure is referred to as static, if the transformations are estimated using all adaptation

data at once, or as online (or incremental) if the transformations are refined as more adap-

tation data becomes available. In addition, adaptation algorithms can also be classified as

model-space if they directly transform the parameters of the acoustic model, or feature-space

if they transform the acoustic feature vectors only [92].

1.2 Challenges in Speaker Adaptation

The primary goal of any speaker adaptation algorithm is to achieve ASR system perfor-

mance levels that are significantly better than those of SI ASR systems and comparable to
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that those of SD ASR systems. There are several challenges that any speaker adaptation

algorithm must handle, in order to achieve the primary goal. The constraints include spar-

sity of adaptation data, variability among speakers, robustness of the adaptation approach,

and computational resources available for performing adaptation.

1.2.1 Adaptation Data Sparsity

The number of samples of adaptation data available, from an individual speaker, is typically

several orders of magnitude less than that used for training an SI acoustic model. In

addition, the number of adaptation parameters to transform (or adapt) in the SI acoustic

model of large vocabulary ASR systems, is several orders of magnitude higher than the

number of samples of adaptation data. This implies that there will be insufficient or no

data available for many parameters in the acoustic model. To deliver improved performance,

adaptation algorithms require strategies to cope with training data insufficiency such that

there is a graceful back-off in adaptation of acoustic model parameters with sufficient data

to those with none, and a mechanism for sharing adaptation transformations across acoustic

model parameters.

1.2.2 Speaker Variability

As previously mentioned, there is variability in a large speaker population with respect to

linguistic, demographic and physiological attributes. For example, a speaker who grew up

and lives in the southern dialect region of United States will have different pronunciation

patterns compared to someone from Manhattan, New York. Variability in speech also arises

from demographic factors such as gender, age, years of education, and cultural upbringing.

Physiological differences in the human speech production systems, such as the vocal tract,

which are determined in part by gender also introduces variability in speech. We conjecture

that, in the presence of sparse adaptation data, adaptation strategies that account for such

speaker variability would produce better speaker-adapted (SA) models compared to those

produced by global adaptation strategies.
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1.2.3 Adaptation Robustness

ASR systems that handle real-world situations encounter speech under a wide range of

conditions that include amount of adaptation data available, speaker and channel variability,

varying ASR performance level with respect to the SI ASR system. Adaptation algorithms

should not only be able to improve overall system performance, but also be robust to deliver

such improvements across the entire range of adaptation conditions presented to the system.

This is especially important for usability of systems that handle large speaker populations,

for example, automated call center support systems, where callers may additionally use

several different channels (cellular, land-line, hands-free, etc.) to interact with the system.

1.2.4 Computation Complexity

Adaptation algorithms should have low overheads both in terms of the time and mem-

ory needed to estimate adaptation transformations. Real-world ASR applications such as

ASR on portable computing devices, ASR-based dictation systems for desktop computers,

telephone-based ASR applications that handle a large volume of users, all have resource

constraints with respect to both available computing capacity and memory. For adapta-

tion algorithms to have an impact on real-world applications, they must achieve a trade-off

between computational efficiency and ASR performance gains.

1.3 Speaker Adaptation Approaches

Significant research efforts have been applied to the problem of adaptation for ASR systems

and in a little over a decade, several important advances have been reported. Some of these

approaches are now widely accepted as standards and an excellent survey can be found

in [116]. A brief description of the major speaker adaptation approaches are presented in

this section.

1.3.1 Maximum Likelihood Linear Regression (MLLR)

MLLR is the most widely-used adaptation technique in modern ASR systems [25, 59]. It

has been successfully used in improving ASR system performance across a wide range of
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domains and tasks. The key to its successful application lies in its use of a SI adaptation

strategy and an SA back-off strategy to handle moderate to sparse amounts of adaptation

data. In MLLR, using an initial transcription of the adaptation data and a maximum

likelihood (ML) estimation approach, a transformation matrix is estimated for the means

and variances of the Gaussian distributions of the SI acoustic model. The SI adaptation

strategy is designed by organizing the SI Gaussian distributions into a tree, referred to as

the regression class tree, using an appropriate similarity measure between the distributions.

Given adaptation data of a speaker, the SA back-off strategy is implemented by descending

down to those nodes in the tree that satisfy a pre-determined amount of data. These nodes

are called regression classes, and an adaptation transformation is estimated for each such

node and shared among all SI Gaussian distributions in that node, irrespective of whether

they are observed in the adaptation data. Since the SA back-off strategy determines the

number of regression classes to use, and by extension the number of adaptation parameters

to estimate, it also serves the role of determining adaptation complexity.

1.3.2 Speaker Clustering

Speaker clustering approaches for adaptation primarily target cases of sparse adaptation

data. This class of algorithms usually has two steps: an offline speaker clustering step

and an online adaptation step. In the speaker clustering step, a large group of speakers

are used to train component models representative of clusters that group similar speak-

ers. The component models can be derived using an adaptive training approach [34] or in

the eigenspace of SD acoustic models [53]. In the adaptation step, weights (one for each

component, or cluster-specific, model), are estimated by maximizing the likelihood of an

individual speaker’s adaptation data. Since a single weight is estimated for cluster-specific

model, these algorithms are naturally suited to cases of sparse adaptation data.

1.3.3 MAP Family

HMM-based ASR systems are typically trained using a ML approach such that the parame-

ter values λ are chosen to maximize the likelihood of the training data p(O|λ). In maximum
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a posteriori parameter estimation (MAP), the parameters λ are set at the maximum of

the distribution p(λ|O) or equivalently p(O|λ)po(λ), where po(λ) is the prior distribution

of the parameters [38]. MAP estimation requires the definition of a prior distribution. It

is convenient if the prior density is from the same family as the posterior distribution (the

conjugate prior) if it exits. For mixture Gaussian HMMs such a conjugate prior of finite

dimension does not exist and an alternative approach that is presented in [38] is used.

A key advantage of the MAP approach is that as the amount of training data increases

towards infinity the MAP estimate converges to the ML estimate. Its main drawback is

that only parameters that are observed in the adaptation data can be adapted. To update

poorly adapted, or unadapted parameters of an SI system, linear regression relationships

that model correlations between the parameters are used as described in regression based

model prediction (RMP) [1]. Under this approach, a set of speaker dependent model sets are

computed and for each Gaussian mean element in the system other mean values are found

that are well correlated with its speaker-dependent changes. RMP first updates models

using standard MAP, and then uses parameters that have received a reasonable amount of

adaptation to generate parameter estimates for each unadapted or poorly adapted target

value.

1.3.4 Other Adaptation Approaches

There also exists a class of techniques referred to as speaker normalization, which removes

variability amongst speakers such that acoustic feature vectors are better suited to use with

a speaker-independent model. This is different from speaker adaptation, where the goal

is to estimate a better SD model. Speaker normalization techniques do not alter model

parameters in any way, but only alter the observation acoustic feature vectors such that

some speaker-dependent variabilities are removed. The simplest of these is the widely

used acoustic feature vector mean normalization technique, which subtracts the long term

mean from individual speakers. Another technique that is popular is vocal tract length

normalization (VTLN), which rescales the frequency axis with the aim of accounting for

differences in vocal tract length between speakers [27, 56].
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1.4 Problems with Existing Approaches

The major speaker adaptation approaches are able to cope with some or all of the challenges

of adaptation with varying degrees of success. However, several shortcomings exist both with

the design and performance of current approaches, which are enumerated below.

• Robustness in adaptation is a major shortcoming of current adaptation approaches

in achieving ASR performance improvements across a wide range of adaptation con-

ditions. In particular, our experiments show that MLLR adaptation degrades ASR

performance levels for 15-30% of speakers, across a wide range of of the amount of

adaptation data available, or ASR performance levels achieved with the SI acoustic

model, and across several domains of ASR tasks.

• Adaptation strategies designed by mainstream adaptation approaches, e.g., MLLR

and MAP, do not adequately model speaker variability. For example, in MLLR, the

adaptation strategy (adaptation transformation sharing scheme) is specified for all

target speakers using a single speaker-independent regression class tree. This rules out

achieving any additional ASR performance improvements by varying the adaptation

strategy that may be more suitable for individual speakers or groups of “similar”

speakers.

• Adaptation complexity is usually determined by the amount of adaptation data avail-

able for individual speakers. Our experiments show that this approach, in the case of

MLLR, is often not adequate in achieving the best possible ASR performance improve-

ments from adaptation. Investigation of additional sources of information that can

serve as good predictors of adaptation complexity can lead to higher ASR performance

gains from adaptation.

1.5 Contributions of Dissertation

The focus of this dissertation is in particular on MLLR speaker adaptation when it is used

in unsupervised, static and model-space mode. The instances of MLLR adaptation that are



8

used for transforming the feature vectors directly, are utilized by the ASR systems built on

in this dissertation, without modification. The main contributions of the research presented

in the dissertation are summarized below.

1.5.1 Speaker Variability in Adaptation Strategies

We introduce a strategy to model speaker variability in the eigenspace of MLLR transfor-

mations by partitioning a large corpus of speakers and learning cluster-specific regression

class trees. Our experiments show that choosing the best possible regression class tree for

individual speakers lead to significant improvements in ASR performance gains from MLLR

adaptation, across different ASR tasks. In addition, when the best cluster-specific regression

class tree is used with MLLR, there is reduction in the variance of ASR performance levels

and significant improvement in performance for speakers with the worst ASR performance

levels. By studying the structure of the cluster-specific regression class trees, we hypothesize

that the speaker clusters are representative of dialect (and possibly sociolect) patterns in

large speaker populations.

1.5.2 Robust Combination of Adaptation Transformations

To realize the potential ASR performance gains from using cluster-specific regression trees

for individual speakers, we developed a robust strategy to estimate weights for linearly

combining the transformations from each cluster and produce a composite adaptation trans-

formation. The weight estimation strategy is a two-step back-off strategy for determining

weights that maximize the likelihood of adaptation data with or without inequality con-

straints. The application of this approach across a range of ASR tasks show small to

moderate improvements in ASR performance levels. In addition, the transformation com-

bination approach has significantly less computational overheads compared to previously

reported cluster-specific model interpolation algorithms.
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1.5.3 Adaptation Complexity Control

The most widely-used strategy for adaptation complexity control of individual speakers in

MLLR is to use a threshold on the amount of adaptation data available to determine the

number of regression classes (and adaptation transformations) to use. Experiments show

that this approach is not optimal and significant improvements in ASR performance can

be achieved by choosing the best possible number of regression classes for individual speak-

ers. To take advantage of such potential ASR performance gains, speaker-level information

sources were used to train standard statistical learners to predict the optimal number of

regression classes. Modest, but significant, improvements are achieved on applying this

approach to several ASR tasks. Next, a new and more flexible approach is proposed that

performs node-level pruning in regression class trees, again using standard statistical classi-

fiers but with regression class-dependent features. A procedure is presented to incorporate

this complexity control mechanism into MLLR adaptation in ASR experiments, which pro-

duced improved robustness in ASR system performance for English broadcast news tasks.

1.5.4 Improved Robustness in Adaptation

An important finding of this dissertation is the improvement in robustness of MLLR adap-

tation, across several ASR tasks, when using both of our proposed approaches: using com-

posite adaptation transformations estimated by the linear combination of cluster-specific

transformations and node-level pruning of regression class trees for adaptation complexity

control. In particular, when using the composite adaptation transformations, our exper-

iments show that there is a significant reduction in average ASR performance loss from

adaptation. Both approaches show a reduction in the percentage of speakers who have

degraded ASR performance from adaptation.

1.5.5 Adaptation Correlates

Several information sources were developed, both at the speaker-level and at the node-

level of regression class trees, that can be viewed as adaptation correlates. The categories

of these features include rate of speech, diversity of phones spoken, amount of speech,
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confidence in initial hypothesis of words spoken, and several others. We have investigated

these features with the aim to ascertain their suitability for predicting ASR performance

gains (or losses) from adaptation for individual speakers. In addition, we have used a

combination of these information sources in predicting complexity control in regression

class trees for MLLR adaptation. Rate of speech, entropy of phone durations and amount

of adaptation, computed for nodes in the regression class trees were useful in predicting

regression class tree structures that eventually resulted in improved robustness of MLLR

adaptation.

1.6 Organization of Dissertation

The rest of this dissertation is organized as follows: Chapter 2 briefly reviews the funda-

mentals of ASR systems and provides a detailed foundation of MLLR based and adaptation

and its use of regression class trees. Chapter 3 provides a review of previous research done

in incorporating speaker variability information into speaker adaptation and reports results

of a pilot study. Chapter 4 describes in detail the architecture and components of multiple

ASR systems used in this dissertation. Chapter 5 describes a speaker variability modeling

approach to design multiple, speaker clustered, regression class trees and the outcomes of

ASR experiments that user them. Chapter 6 and 7 describes proposed research directions

for complexity control of complexity of MLLR adaptation using higher-level sources of in-

formation, but predicting the complexity at varying levels of granularity in regression class

trees. Finally, Chapter 8 concludes this dissertation by listing its main findings and possible

future directions of research.
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Chapter 2

SPEAKER ADAPTATION USING MLLR

This chapter reviews the background literature on MLLR-based speaker adaptation, but

first provides a short introduction to ASR. A considerable amount of research results have

been published on speaker adaptation for ASR and the reader is referred to them, when

appropriate, for further details.

2.1 ASR Review

The standard approach in automatic speech recognition is to find the most likely sequence

of words ŵ given the acoustic signal x from all possible word sequences W (Eqn. 2.1). Using

Bayes’ rule the problem can be broken into two components, as shown in Eqn. 2.2, where

p(x|w) is the acoustic model and p(w) is the language model. As mentioned in Chapter 1, the

research presented in this dissertation focuses only on the acoustic model. Other prominent

approaches to ASR include applications of neural networks as described in [10,61].

ŵ = arg max
w∈W

p(w|x) (2.1)

= arg max
w∈W

p(x|w)p(w) (2.2)

2.1.1 Parameter Estimation Framework for HMMs

A typical approach to designing an acoustic model is to use hidden Markov models (HMMs)

to model sub-word units, e.g., tri-phones, with mixture Gaussian distributions modeling the

state output distributions. Each individual HMM (for a tri-phone) is usually configured to

have 3-states with only left-to-right transitions permitted [88]. The most common solution

to training the models are based on maximum likelihood (ML) estimation. A closed form

solution for ML estimation of the parameters of the HMMs does not exist. The solution is to

use an iterative approach and maximize an auxiliary function, as described by the Baum-
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Welch algorithm, which is an instance of the Expectation Maximization (EM) algorithm

[6,23,87]. The auxiliary function for HMMs can be expressed as

Q(M,M̂) = EP (θ|o)

[

log P (O, Θ|M̂)
∣

∣

∣
O,M

]

=
∑

θ∈Θ

P (θ|O,M) log P (O, θ|M̂) (2.3)

where, M is the current model, M̂ is the model being estimated; O is the entire observation

sequence and Θ represents the set of all possible HMM state sequences θ. It can be shown

that finding the M̂, which maximizes the auxiliary function guarantees an increase in the

likelihood of the training data O, unless it is already at a maximum.

Discriminatively trained HMMs that directly minimize a WER criterion are in principle

guaranteed to produce superior performance compared to ML-estimated HMMs. In mod-

ern ASR systems parameters of HMMs are often estimated using a discriminative training

procedure that maximizes a mutual information criterion [41, 80], or a minimum phone er-

ror (MPE)-based criterion [84, 103]. In this dissertation, research results are presented on

adaptation of both ML-estimated and discriminatively-estimated HMMs. MLLR adapta-

tion is a maximum likelihood approach, but extensions based on discriminative training

have been developed. Since the discriminative extensions are more expensive and have not

led to significant gains over MLLR, they are not widely used and this work will be within

the standard MLLR framework [43].

2.1.2 Decoding the State Sequence

Given an observation sequence O, the most likely hidden sequence θ̂ is “decoded” by,

θ̂ = arg max
θ∈Θ

p(θ|O) (2.4)

using the Viterbi algorithm as described in [87,108]. A main advantage of this algorithm is

that it can be easily extended to continuous speech and also allows disjoint models within

the same model to be considered separately, which is equivalent to the case of having

multiple pronunciations. For computational efficiency, a pruning algorithm is often used,
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that considers only those paths that are above a certain threshold.

2.2 Maximum Likelihood Linear Regression

MLLR-based speaker adaptation belongs to the linear transformation family of adaptation

algorithms [25,59,77,79]. Adaptation is performed by linearly transforming of the SI means

and variances of Gaussian distributions of the acoustic model. The approach is reviewed

here as presented in [25,59]. For example, the adapted Gaussian mean µ̂m can be represented

as,

µ̂m = Wmξm (2.5)

where Wm is an n × (n + 1) transformation matrix and ξm is the extended mean vector,

ξm = [1 µm]T = [1 µm1
µmn

]T

2.2.1 Mean transformation

The linear transformation matrix for adaptation of Gaussian mean is estimated from a

speaker’s acoustic adaptation data using an ML approach and an initial transcription of the

adaptation data. Again, the solution is iterative since the state sequence is hidden. The

SI Gaussian distributions are grouped into R regression classes for the purpose of sharing

adaptation transformation Wr among them. Considering only the terms that involve the

mixture Gaussian distributions, the auxiliary function of Eqn. 2.3, can be written as

Q(M,M̂) = K −
1

2

R
∑

r=1

Cr
∑

c=1

Mc
∑

m=1

T
∑

τ=1

γm(τ)
(

o(τ) − Wrξm

)T
Σ−1

m

(

o(τ) − Wrξm

)

(2.6)

where, K is the normalization constant; Cr is the number of mixture Gaussian distributions

in each regression class r, and each mixture Gaussian distribution c has Mc component

Gaussian distributions; o(τ) is the observation vector at time τ and γm(τ), µ̂m and Σ−1
m are

the occupation probability at time τ , mean vector and inverse covariance of the of the mth

Gaussian distribution.
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Differentiating Eqn. 2.6, and equating it to 0, the following expression is obtained,

R
∑

r=1

Cr
∑

c=1

Mc
∑

m=1

T
∑

τ=1

γm(τ)Σ−1
m o(τ)ξT

m =

R
∑

r=1

Cr
∑

c=1

Mc
∑

m=1

T
∑

τ=1

γm(τ)Σ−1
m WrξmξT

m

=
R

∑

r=1

V(r)WrD
(r) (2.7)

where V(r) is the state distribution inverse covariance matrix scaled by the state occupation

probability,

V(r) =
T

∑

t=1

γm(τ)Σ−1
m (2.8)

and D(r) is the outer product of the extended Gaussian mean vectors,

D(r) = ξmξT
m (2.9)

For the case when the HMM state Gaussian distributions are modeled by a diagonal covari-

ance matrix, a closed form solution for Wr is obtained in the maximization step of the EM

algorithm by solving a set of simultaneous equations, one for each row of Wr [59],

wi = G(i)−1zT
i (2.10)

where wi and zi are the ith rows of Wr and Z respectively. Z is an n × (n + 1) matrix

whose elements are given by,

zij =
n+1
∑

q=1

wiqg
(i)
jq (2.11)

and the elements of G(i) is given by,

g
(i)
jq =

R
∑

r=1

v
(r)
ii d

(r)
jq (2.12)
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The EM algorithm guarantees that the adapted Gaussian distribution obtained by applying

the transformation matrix Wr will increase the likelihood of the adaptation data at each

iteration. The row-by-row estimation procedure for Wr can be performed using Gaussian

elimination or LU decomposition. MLLR adaptation of the Gaussian mean is very effective

and is able to improve ASR system performance by 13%-17% across a range of tasks [37]. In

most cases, one to three iterations of MLLR, is sufficient to achieve significant performance

improvements.

2.2.2 Variance Transformation

The Gaussian covariance matrices can also be adapted using linear transformations as shown

in Eqn. 2.13 or Eqn. 2.14 (proposed in [37]),

Σ̂m = LmHmLT
m (2.13)

Σ̂m = HmΣmHT
m (2.14)

where Lm is the Choleski factor of the original covariance matrix Σm, and Hm is the

adaptation transformation matrix in both cases. An iterative estimation procedure for the

variance transformation of Eqn. 2.14 that guarantees increase in likelihood of the adaptation

data with variance-adapted acoustic model is described in [37]. The estimation of variance

adaptation is carried out in two steps such that

P (O|M) ≤ P (O|M̂) ≤ P (O|M̃) (2.15)

where M is the SI model, M̂ is the model with the adapted Gaussian mean and M̃ is the

model with the adapted Gaussian mean and variance. The adapted covariance matrices

are “full”, which can lead to increased computational overhead. A diagonal variance trans-

formation can be estimated by forcing the off-diagonal elements to be zero in the iterative

procedure. ASR system performance gains obtained from variance adaptation are in the

range of 2%-7%, which much less than those obtained from Gaussian mean adaptation only.
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2.2.3 Transformation structures

In past work, various structures of the adaptation transformations, both mean and variance,

have been explored. The transformations can be full matrix, or block diagonal when using

feature vectors that have distinct subsets e.g., 1st and 2nd differential components [78] or

diagonal transformation in the case of sparse adaptation data. In the general case, the

mean and variance adaptation transformations are separately estimated leading to differ-

ent transformations, which is referred to as unconstrained MLLR. If they share the same

transformation, then it is referred to as constrained MLLR [25].

2.3 Regression Class Trees

MLLR-based speaker adaptation produces significant ASR system performance gains with

relatively small amounts of adaptation data and low computational overhead. To achieve

this, SI Gaussian distributions are clustered into regression classes and all distributions

within a particular regression class share a single MLLR transformation that is estimated

using the adaptation data for that class. This allows the adaptation of SI Gaussian distribu-

tions which are not observed in the adaptation data and also provides robustness in cases of

small amounts of adaptation data and against errorful adaptation transcription in the case

of unsupervised adaptation. By sharing adaptation transformations, fewer adaptation pa-

rameters need to be estimated, compared to the case of estimating a unique transformation

for every SI Gaussian distribution in the acoustic model. The regression classes are usually

organized into a tree structure which is referred to as a regression class tree. The generation

of regression classes can be divided into two problems: offline design of the regression class

tree structure and online complexity control of the tree for a target speaker.

The task of designing regression class trees has two components: clustering criteria to

form regression classes and a clustering algorithm to organize these classes into a tree.

The primary goal while designing regression classes is to pool together those acoustic units

into the same cluster that need to be transformed similarly. However, it is difficult to know

beforehand, for an unseen speaker, how the SI Gaussian distributions should be transformed

due to adaptation. There are three current approaches to this problem: an acoustic-space
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approach as in [15, 58], where it is assumed that Gaussian distributions that are close in

an acoustic space can be transformed similarly; an approach that determines the regression

class tree structure by maximizing the likelihood of adaptation training data [31,32]; and a

phonetic-space approach as in [100,106], where it is assumed that acoustic units that belong

to the same phonetic class transform similarly. The first two approaches are data-driven

and require the availability of a corpus of adaptation training data consisting of several

speakers, to ensure that the clusters formed are speaker independent.

To measure similarity between SI Gaussian distributions in an acoustic-space, two forms

of distance measures have been investigated: a symmetric divergence-based distance mea-

sure between two Gaussian distributions N (µ1, Σ1) and N (µ2, Σ2) as shown in Eqn. 2.16

[57]; and a likelihood change-based distance measure as shown in Eqn. 2.17 that relies on

the availability of statistics collected while training SI acoustic models [81]. Eqn. 2.17 shows

the change in likelihood of acoustic model training data when D Gaussian distributions are

merged into one distribution c, assuming that the training data consisted of T observations

and γs(τ) is the probability of occupying state s at time τ .

Dsym =
1

2
tr(Σ−1

1 Σ2 + Σ−1
2 Σ1 − 2I) +

1

2
(µ1 − µ2)

′(Σ−1
1 + Σ−1

2 )(µ1 − µ2) (2.16)

δL =
(

∑

d∈D

1

2
log(|Σd|)

T
∑

τ=1

γd(τ)
)

−
(1

2
log(|Σc|)

T
∑

τ=1

γc(τ)
)

(2.17)

For the acoustic-space based approaches, there are three main clustering algorithms that

have been investigated: a hierarchical agglomerative clustering procedure [57] and a divisive

clustering procedure [15, 31]. In [57], SI Gaussian distributions are first clustered into base

classes using an agglomerative procedure and the divergence-based clustering criterion. A

base class is the smallest collection of Gaussian distributions which can share the same

transformation, and in the limit each Gaussian distribution will form its own base class.

The base classes are again agglomeratively clustered to form a tree using the same criterion

such that the root node contains all the base classes. The divisive clustering approach starts

with all base classes in the root node and then proceeds in a recursive manner by splitting

every node (regression class) into two (regression classes) based on a chosen clustering
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criterion. The system in [15] uses a soft K-means algorithm [69] as the clustering criterion.

In [31,32], the clustering criterion is based on change in likelihood of adaptation training

data for a particular assignment of base classes to regression classes. An initial set of base

classes is obtained from acoustic model training as in [81], and they are agglomeratively

clustered into two regression classes based on either of the two methods just described

(acoustic-space). Each base class swaps its regression class till the assignment of base

classes to regression classes is the one that maximizes likelihood of the adaptation data. A

two-class regression class tree, generated by this process, achieved small improvements in

performance, when compared to a two-class tree generated by the acoustic-space approach

on a standard unlimited vocabulary task.1The phonetic-space approach uses knowledge of

acoustic phonetics to form regression classes. In the system described in [100], phones

were clustered into classes based on their membership of broad acoustic phonetic classes.

Also, in [106], Venkataramani and Byrne investigated the use of pronunciation changes in

forming regression classes by grouping phones based on their changes that were predicted

by a statistical pronunciation model of [89].

PSfrag replacements

root node

back-off
node

node with
sufficient data

leaf node with
insufficient data

Figure 2.1: An example regression tree with 4 levels

The problem of online complexity control of the regression class tree is to decide a

11994 ARPA Hub 1 unlimited vocabulary development and test set with approximately 15 sentences per
speaker.
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suitable depth of the tree to use for a target (unseen) speaker. Since each leaf node in the

regression class tree represents a single regression class, this implicitly controls the number of

MLLR transformations to be estimated. The most popular approach is to control tree depth

based on the amount of adaptation data from a target speaker [15,57,58]. In this approach,

the regression class tree is descended, starting from the root node, to the lowest node that

has a sufficient amount of adaptation data to estimate a transformation for the Gaussian

distributions assigned to it. An example of this approach is shown in the regression class tree

of Figure 2.1. In [57,58,100,106] the approach to online complexity control was to use a fixed

number of regression classes is that were predetermined based on the knowledge of the target

task or development test results. Gales in [31] investigated two schemes for online complexity

control: a cross-validation (CV) approach and an iterative MLLR approach both of which

did not need any preset thresholds. Under the CV approach, the regression class tree is

descended up to those nodes whose adaptation transformations, estimated using CV subsets

of the adaptation data at that node, produced a higher likelihood gain on the adaptation

data, compared to the transformation of the parent node. Under the iterative MLLR

approach, as applied to a binary regression class tree, transformation estimation followed

by subsequent recognition is performed for each level in the tree, and it is descended up to

those nodes whose recognition hypothesis is different from the ones available in the parent

nodes. Both these approaches, however, did not produce significant additional performance

wins compared to the popular adaptation data threshold-based approach or just using a

fixed number of regression classes.

Wang and Zhao describe a dynamic programming algorithm in [110], based on the mini-

mum description length (MDL) principle to perform online complexity control of regression

class trees. However this approach has a heavy computational overhead, since for every

node of a full tree the estimates of different transformation matrix structures need to be

obtained at first, and the procedure then performs an exhaustive search through the space

of all tree-cuts of the full regression class tree.
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2.4 Speaker Adaptive Training

Speaker-independent acoustic models tend to have higher variance than speaker-dependent

models due to a wide-range of variations displayed by speakers in terms of vocal tract char-

acteristics, dialect manifestations and other speaker-specific idiosyncrasies which are part of

the speech signal. To model the inter-speaker and intra-speaker characteristics separately, a

speaker-adaptive training (SAT) framework was proposed in [2,3], which extends the use of

MLLR to the training speakers and produces a compact SI acoustic model that is a better

starting point for adaptation. In the SAT paradigm, MLLR transformations are applied to

both training and testing speakers, and SAT generally produces lower WER compared to

non-SAT acoustic models. The general form of SAT has a significant computational over-

head, since it uses unconstrained MLLR, which can be overcome by the use of constrained

MLLR [33]. When a single (global) transform is used, the constrained MLLR transfor-

mation approach can be implemented as a feature-space transformation [33], which is not

computationally expensive.

2.5 Related Research on MLLR

The background provided in this chapter serves as a basis for presenting the research results

of this dissertation. Several promising variants of MLLR has been reported that are outside

the scope of this work, but are briefly mentioned here. In cases of sparse adaptation data, the

estimate of MLLR adaptation transformations are often biased and a better estimate can be

obtained using prior densities for the transformations. In [17,19], the matrix-variate normal

density served as the prior distribution for the adaptation transformation. A discriminative

approach to estimating MLLR transformations was reported in [43]. MLLR has also been

successfully applied for environmental adaptation [37], speaker recognition [28] and optical

character recognition [62].
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Chapter 3

MODELING SPEAKER VARIABILITY

MLLR-based speaker adaptation has been successful in improving ASR system perfor-

mance for target speakers across a range of tasks. However, on closer inspection [65, 66],

it has been observed that there are issues of robustness in the ASR system performance

improvements obtained using MLLR. For example, about 10%-15% have degraded ASR

performance when using adapted acoustic models. In addition, in cases of very sparse adap-

tation data, MLLR produces inferior ASR performance [53]. The most promising solutions

to these problems have involved modeling speaker variability for large speaker populations

and using such models to tune adaptation strategies for individual speakers. This chapter

first provides a brief overview of sources of speaker variability, which is followed by a discus-

sion of previous work in modeling speaker variability for ASR. Finally, a preliminary study

is presented, that explores the relationship between several higher-level information sources

of speaker variability and the performance improvements obtained using MLLR speaker

adaptation.

3.1 Sources of Speaker Variability

In a large population, considerable diversity exists across the acoustic speech signal of

individual speakers. This is referred to as speaker variability, in the context of ASR, and it

arises due to several causes. The most important of these are enumerated below.

3.1.1 Pronunciation patterns

Differences in pronunciation patterns is a major source of speaker variability. These differ-

ences shown up when speakers use a different dialect e.g. speakers from different dialectal

regions in United States; when individuals are non-native speakers, e.g., English spoken

by a native Spanish speaker; due to sociolectal differences, which can include demographic
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attributes such as age, years of education, social status, cultural upbringing, etc.

3.1.2 Transient

Intra-speaker variability can arise due to transient conditions that affect individuals, such

as emotional state (e.g., anger, happiness, etc.) and sickness (e.g., common cold) that alter

voice quality. In addition, the register, i.e., the formality of speaking situation and how

familiar the speakers are with others, can impact the articulation quality and the extent to

which a speaker uses dialectal variation.

3.1.3 Physiological

Physiological conditions that affect speech quality the most is the length and shape of the

human vocal tract. The characteristics of the vocal tract is determined in part by gender,

with males tending to have longer vocal tracts and lower pitch frequency in the speech

signal. Other conditions such as damage to the larynx, for habitual smokers, can greatly

affect the speech signal.

3.1.4 Environmental

Environmental conditions that influence the speech signal are widespread in everyday life,

such as, speech from neighboring speakers, ambient noise from events, such as shutting

doors, noise inside a car, etc. and conditions that affect the channel being used to transmit

the speech signal, cellular vs. land-line telephone channels. Depending on loud the noise is,

it can affect how a speaker talks (Lombard effect).

3.2 Speaker Clustering

In initial work that explored modeling speaker variability, the goal was to group a training

speaker population into clusters and train a separate acoustic model for each. Then, a

target speaker was assigned to the “closest” cluster-specific model before recognition. The

idea was to capture speaker variability information in the cluster-specific models and use

the appropriate one for a target speaker.
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Imamura [50] proposed an approach in which initial speaker-specific acoustic models

were clustered using a cross-entropy measure. Kosaka [52] presented an approach where

speaker-specific models were organized into a tree such that any interior node in the tree

stored an acoustic model trained using data of all speakers under that node, and a target

speaker was assigned to that node which produced the highest likelihood on the adaptation

data. In [82], a combination of speaker adaptive training and speaker clustering is reported,

where MLLR transformations are applied to the N training speakers closest to a given test

speaker, to train an SD model from the transformed data.

Major shortcomings of these approaches are that the speaker cluster-specific models may

not be trained with sufficient amount of data to be representative of that cluster and the

decision to assign a target speaker to a particular cluster may be errorful.

3.3 Model Combination Approaches

To address the problem of using a single speaker-cluster-specific model in classical speaker

clustering approaches, the family of model combination approaches were developed. The

common theme of all model combination approaches is to first train speaker-cluster-specific

models (component models or adaptation transformations) from a large training speaker

population. Then, for a target speaker, weights are estimated for each component model,

using the adaptation data. Finally, the models are linearly combined to produce a composite

(adapted) acoustic model for that particular speaker. The weights are the only parameters

estimated, which are far less in number than the parameters in an adaptation transformation

(mean or variance), which makes these approaches suitable for cases of sparse adaptation

data. Some of the major model combination-based approaches are described below.

3.3.1 Cluster Adaptive Training

Gales proposed the cluster adaptive training (CAT) approach in [34]. It assumes that

different speaker cluster models can have the same Gaussian covariances and mixture weights

and only the Gaussian means vary across speakers. A set of canonical speaker cluster models

can be trained in a framework similar to SAT and, given adaptation data from a target

speaker, a set of weights for adapting the canonical model means are estimated using an
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ML approach and a single regression class tree. CAT is able to achieve improvements in

WER performance for large-vocabulary dictation tasks using small amounts of adaptation

data.

3.3.2 Eigenspace approaches

Kuhn et al. proposed an adaptation technique in [53, 54] that also adapts the means of a

set of canonical speaker-cluster-specific models. The canonical models, or eigenvoices, are

formed by using principal components analysis (PCA) on a set of supervectors formed by all

the mean vectors of a set of SD acoustic models. The vectors with the largest eigenvalues are

chosen as the eigenvoices, or the basis set. During adaptation a maximum-likelihood eigen-

decomposition (MLED) is used to estimate the weights (uses a single regression class tree)

to be used for adapting the eigenvoices, which is similar to the weight estimation technique

used in CAT. Eigenvoices have been useful in reducing WER for small-vocabulary tasks

using little adaptation data.

In [14] and [63], an eigenspace representation of MLLR transformations (of a single

acoustic model) was used to obtain basis MLLR transformations, and a test speaker’s MLLR

transformation is produced by interpolating the basis transformations, using weights esti-

mated from the speaker’s adaptation data and a single regression class tree.

3.3.3 Reference Speaker Weighting

Hazen proposed in [45] a scheme to decide on a set of reference speakers whose models

were combined using weights estimated by a ML approach on a target speaker’s adaptation

data. The model of each reference speaker was represented using an estimate of the centroid

of the Gaussians of each HMM state in the speaker-dependent models. The weights were

constrained to sum to one and this approach was suitable for cases of sparse adaptation

data.
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3.3.4 Stochastic Transformations

The basic form of MLLR as in (2.5) assumes that a linear transformation adequately mod-

els the dependencies between training and testing speakers. This assumption may be too

simplifying and an alternative approach, referred to as maximum likelihood stochastic trans-

formation, was proposed by Diakoloukas and Digalakis in [104] where a probabilistic piece-

wise linear transformation is used instead. Using this approach the probability of state m

generating observation ot at time τ is expressed as,

p(o(τ)|j) =

Nω
∑

i=1

Nα
∑

k=1

p(ωi|m)p(αk|m, ωi) · N (o(τ);Wm,kξm,i, Σm,i) (3.1)

where Nα is the number of component transformations used by each HMM state m, and
∑Nα

k=1 p(αk|m, ωi) = 1. αk denotes the event that the kth transformation is used, and the

component transformation Wj,k are shared by all Gaussian distributions in state m and the

output distribution of state m is modeled by a mixture Gaussian distribution. The proba-

bilities p(αk|m, ωi) that select the kth transformation at time t for the ith mixture Gaussian

component of state m are specific to each mixture component. The parameters of the Nα

transformation matrices are estimated by maximizing the likelihood of the adaptation data.

The details of the re-estimation formulae are provided in [104]. Each of the Nα transforma-

tions can be thought of forming a set of basis transformations which are interpolated using

the weights p(αk|m, ωi). The basis set can represent a set of canonical speakers, speaker

clusters, etc. The linear combination of transforms was successful in reducing WER for

both speaker adaptation and dialect-adaptation experiments [8].

3.4 Improving MLLR Robustness

Several approaches have been explored with the specific aim of improving robustness of

performance gains obtained using MLLR in applications where the amount of adaptation

data is small. An MAP-like interpolation scheme between the SI Gaussian mean and the

estimated mean was proposed in [42]. In [17] and [19], a prior distribution for the mean

transformation parameters was used, which improves performance when adaptation data
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available is small. A variant of the EM algorithm that uses a discounted likelihood criterion

and does not quickly over-train was presented in [12]. These approaches, however, are

mostly concerned with cases of sparse adaptation data, and as such are not less relevant to

the results presented in this dissertation that are concerned with handling a wide range of

available data, e.g., from several minutes to a only a few seconds.

3.5 Pilot Study

A pilot study was conducted with the aim of understanding the relationship, if any, between

higher-level speaker variability information and ASR performance changes due to MLLR-

based adaptation. The plan of the study was to first examine robustness issues in MLLR

adaptation, and depending on the outcome, next use higher-level speaker-dependent features

to predict (a) ASR performance change due to MLLR adaptation and (b) if an individual

speaker would benefit or hurt due to adaptation. The eventual goal was to design adaptation

strategies that took into account speaker variability information, based on conclusions (or

evidence) that resulted from the pilot study.

3.5.1 ASR System & Task

A development version of the ASR system described in [100], focused on the task of recogniz-

ing conversational telephone speech (CTS) in North American English from 544 speakers1

was used for this study. The system used unsupervised MLLR-based adaptation with a

full transformation for Gaussian mean adaptation and diagonal transformation for variance

adaptation and a regression class tree that was built using acoustic phonetic knowledge

of association of phones into clusters. For online complexity control, the threshold on the

amount of adaptation data was set to 200 frames of speech, which resulted in nearly all

speakers in the test set to use 9 regression classes. The system description is kept brief here,

in the interest of focusing on the pilot study itself. A more detailed description of all the

ASR systems and tasks used for the research presented in this dissertation is available in

Chapter 4.

1NIST English CTS 1998-2003 Evaluation test sets
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3.5.2 Variable Success of MLLR

Figure 3.1 shows a histogram of the relative changes in WER due to MLLR adaptation for

the speakers mentioned above. The horizontal axis represents relative Gain(+)/Loss(-) from

MLLR adaptation. About 15% of the speakers show worse performance after adaptation,

which demonstrates that MLLR is not successful in improving ASR system performance for

all speakers.
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Figure 3.1: Relative WER (%) changes due to MLLR adaptation (English CTS)

3.5.3 Prediction Framework

With evidence of performance degradation due to MLLR adaptation at hand, a linear

regression-based framework (Eqn. 3.2) [68] was used for predicting e, the ASR performance
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change due to MLLR adaptation and a classification-based framework (Eqn. 3.3) was set

up, using logistic regression [68], to predict, if a particular speaker would benefit from

MLLR adaptation, with probability p, using speaker-level features, x1, x2, . . . xK consisting

of confusion network confidence measures [67] of the unsupervised adaptation hypothesis,

statistics for rate of speech (ROS), fundamental frequency (F0) and energy of the acoustic

signal, and vocal tract length (VTL) warping factor.

e = α +
K

∑

i=1

βixi e ∈ < (3.2)

log
( p

1 − p

)

= α +

K
∑

i=1

βixi p ∈ {0, 1} (3.3)

The speakers were divided into two parts: a training set comprising 427 speakers that used

for training the two predictors and a held-out test set comprising 72 speakers.

3.5.4 Prediction Results

Table 3.1 shows the root mean square error (RMSE) for predicting relative (rel.) change

in WER due to MLLR adaptation using various subsets of features. As can be seen, the

predictor is weak for all subsets of features, compared to the case of just predicting the

training mean. For the case of predicting whether a particular speaker would benefit from

adaptation2, the classification error was 33%, which was not significantly better than chance,

or predicting the most frequent case.

3.5.5 Conclusions

The pilot study provides clear evidence of problems with robustness of ASR performance

improvements obtained due to MLLR adaptation. As mentioned in Section 1.2.3, this is

an important issue for ASR systems that handle real-world conditions, that determines the

overall usability of the system across a wide-range of conditions. The weak performance

2In ASR terminology, speakers who are difficult to recognize, or for example, have worse performance
from adaptation, are referred to as “goats”, while those having high performance levels are referred to as
“sheep”.
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Table 3.1: RMSE of predicting Rel. Change in WER due to MLLR adaptation

Configuration RMSE

Training Mean 1 8.72
Unadapted WER 8.65
Confidence 8.07
Confidence + F0 + ROS 8.06
All speaker-level features 8.06

of the higher-level speaker-dependent features for the two prediction tasks, in the pilot

study, indicate that predicting “sheeps” vs. “goats” is not the correct approach to solve

this problem, and the need to investigate automatically-derived speaker-level information

sources, rather than knowledge-driven features for the purpose of incorporating speaker

variability information in designing an adaptation strategy for target speakers. This issue

is explored further, in Chapters 5 and 7, which describe results to address the robustness

of MLLR adaptation.
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Chapter 4

SYSTEM DESCRIPTION

The research presented in this dissertation is based on the DecipherTM ASR platform

developed at SRI International1 with contributions from researchers at the University of

Washington2 and the International Computer Science Institute.3 It is a general purpose

large vocabulary ASR platform that can be customized for several different domains and

achieved competitive performance levels on benchmark evaluations conducted recently by

NIST.4 This chapter provides details of the ASR system architecture for the following

domains: (i) English conversational telephone speech (CTS) [100]; (ii) English broadcast

news (BN) [105]; (iii) Mandarin BN and broadcast conversations (BC) [49]. The discussion

focuses on the components relevant to speaker adaptation. Detailed information covering

all aspects of the ASR platform, which have been developed over several years, are provided

in [75,76,99,100].

4.1 English CTS

The English CTS system is set up to be a multi-pass system as shown in Fig. 4.1. It

uses two different front-end signal processing schemes: Mel-frequency cepstral coefficients

(MFCC) [22] and perceptual linear prediction (PLP) [46] for deriving feature vectors. The

MFCC features are concatenated additionally with Tandem/HATS features [74]. The fea-

ture vectors are processed using standard normalization schemes including mean, variance,

vocal tract length normalization [112], and heteroschedastic linear discriminant analysis

(HLDA)-based [40] normalization to produce feature vectors of 42-dimensional vectors.

1Speech Technology and Research Laboratory(http://www.speech.sri.com)

2Signal, Speech and Language Interpretation Laboratory(http://ssli.ee.washington.edu)

3http://www.icsi.berkeley.edu/groups/speech

4National Institute of Standards and Technology (http://www.nist.gov/speech/)
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Figure 4.1: Architecture of 20xRT English CTS system
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Gender-dependent acoustic models that characterize tri-phones as HMMs and use diagonal

covariances for the state output distribution are trained for each front end. The acoustic

models for first pass decoding (Step 2 & 6) use word-internal triphones, a bigram language

model, and phone-loop MLLR to produce “thin” lattices. The lattices are re-scored using a

4-gram almost-parsing SuperARV [111] language model and processed using confusion net-

works [67] to produce higher-quality hypotheses to be used for adaptation transformation

estimation in subsequent stages. The bigram lattices are also expanded using a trigram

language model and used with cross-word acoustic models in the second and third-passes

of the system (Steps 5, 7 and 9(1-3)). The HMM states of all acoustic models are clustered

using a decision tree [81] and linguistic questions for sharing mixture Gaussian distribu-

tions. The word-internal acoustic models use 320,000 Gaussian distributions for each front

end, and the cross-word ones use 384,000 distributions. In addition, the cross-word acous-

tic models uses normalization based on speaker adaptive training (SAT) using constrained

MLLR (CMLLR) and are trained using the an alternating minimum phone error and max-

imum mutual information estimation (MPE-MMIE) criterion [85, 120]. The mean vectors

and diagonal covariances of the Gaussian distributions of the crossword acoustic models, in

the second and third passes, are adapted to test speakers using unsupervised MLLR and

adaptation hypotheses from the previous passes. The adaptation hypotheses are exchanged

between the two front ends, which is referred to as cross-system adaptation. Intermediate

recognition hypotheses are produced by decoding lattices from the previous stage and the

adapted acoustic models. The third-pass of the system uses “thicker” lattices compared

to the second pass. The final recognition hypotheses are produced by confusion network-

based system combination [29] of the three sub-systems of the third pass of the system that

includes additional knowledge sources from a duration model [30] and a pause language

model [107].

The acoustic model training comprised over 2000 hours of data from the Fisher [20] and

Switchboard [39] corpora. The language model training data was drawn from these corpora

and web sources [11]. This multi-pass system runs under 20 times real-time (13.8xRT) on

3.4 GhZ Intel Xeon processor that had 3 GB of memory.

The architecture of a faster-version of the multi-pass system is shown in Fig. 4.2. This
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Figure 4.2: Architecture of “fast” 5xRT English CTS system

smaller system performs nearly all the functionality of the larger system, but runs under

5xRT. It also performs cross system adaptation by exchanging adaptation hypotheses be-

tween MFCC and PLP front ends.

4.2 English BN

The English BN version of the system shares several components of the CTS system and

its architecture is shown in Fig. 4.3. It has some notable differences: it uses gender-

independent acoustic models; it segments BN shows into speaker “groups” using an un-

supervised clustering algorithm [90], so that these segments can be used as speaker labels

for MLLR adaptation; and it does not employ cross-system adaptation, but instead uses

PLP-based features for the two-passes of the system, which are 52-dimension vectors after

standard normalization. The lattices generated in the first pass (Step 3) are expanded using
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a 5-gram SuperARV language model to a 4-gram PFSG lattice, which were used with the

adapted cross-word MPE-MMIE-based acoustic models in the second pass (Step 7). The

adaptation hypothesis are generated after the first pass from the confusion network pro-

cessing of 5-gram expanded and duration-model-rescored lattices. The number of Gaussian

distributions trained for the two acoustic models were the same as in the CTS system.

The acoustic models were trained using over 3000 hours of BN data from several different

corpora and the language models were trained from a training set of approximately one

billion words. The system ran under 10xRT (9.38) on a 3.4 GHZ Intel Xeon processor with

2 GB memory.

4.3 Mandarin BN/BC systems

The Mandarin BN/BC system used an architecture similar to that of the English BN system,

except it used MFCC-based features with additional pitch features and a tonal phone set in

both recognition stages. The cross-word acoustic models, in the second-pass of the Mandarin

BN/BC system, uses fMPE-based discriminatively trained feature vectors [84]. The acoustic

model training data included 310 hours of Mandarin and 150 hours of Mandarin BC shows.

4.4 MLLR Adaptation

In the unsupervised MLLR step in all the above ASR systems, the adaptation hypotheses

are first aligned using the forward-backward algorithm [6]. Next a full matrix transformation

with an offset vector and a diagonal transformation vector are estimated for adapting the

Gaussian means and covariances respectively. The regression class tree (RCT) used with

unsupervised MLLR in the baseline version of the systems was manually designed using

knowledge of acoustic phonetics. The RCT groups triphone states with the same center

phone according to speaker manner classes (e.g., vowels, fricatives, stops, etc.) and organizes

them into a tree with 9 leaf classes for English CTS/BN and 3 leaf classes for Mandarin

BN/BC. The threshold used for online complexity control of MLLR adaptation was 200

frames.5 This threshold was low enough that for nearly all speakers the number of MLLR

5The front-end signal processing for all the ASR systems set the frame rate to be 10ms with a 25ms
window, which implies that 200 frames corresponds to 2 seconds of acoustic data.



35

Figure 4.3: Architecture of 10xRT English BN system
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transformations estimated was the same as the number of leaves in the tree.

4.5 Baseline Performance

Table 4.1 shows the baseline performance levels of the various ASR systems, after the last

unsupervised MLLR step (Box labeled as “Final Hyps” in Figs. 4.1, 4.2 and 4.3), on recent

NIST benchmark evaluations. These performance levels are competitive, when compared to

other recently developed systems that participated in the same evaluations [15,36,70], and

is used as the baseline performance levels for all the results presented in this dissertation.

Table 4.1: Baseline WER(%) of ASR systems for various domains

Domain(Year) WER(%)

English CTS 2004 18.6
English CTS 2004 (fast) 21.5
English BN 2004 16.0
Mandarin BN 8.0
Mandarin BC 20.7
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Chapter 5

SPEAKER-CLUSTERED REGRESSION CLASS TREES

5.1 Introduction

Speaker clustering has been investigated in previous work, as a means of characterizing

speaker variability, with the aim of introducing flexibility in the adaptation strategy for

target speakers. In Cluster Adaptive Training (CAT) [34], which is a speaker clustering

approach to SAT, several cluster-specific acoustic models or MLLR transformations (and

a single speaker-independent acoustic model) are trained. For a test speaker, a speaker-

adapted model is derived by estimating weights, from adaptation data, to combine the

component acoustic models (or component MLLR transformations) using a single regres-

sion class tree. Kuhn et al. [53] proposed eigenvoices or basis acoustic models, derived from

an eigenspace representation of several cluster-specific acoustic models. The basis models

are linearly combined using optimal weights, from adaptation data, to produce a speaker-

adapted model that lies within the span of the eigenvoices. In [14] and [63], an eigenspace

representation of MLLR transformations (of a single acoustic model) was used to obtain

basis MLLR transformations, and a test speaker’s MLLR transformation is produced by

interpolating the basis transformations, using weights estimated from the speaker’s adapta-

tion data and a single regression class tree. In all these approaches, the component models

or transformations are static, computed as part of the training process, and adaptation

involves only estimating weights for combining transforms or models. Since the number

of weights is typically small (one per cluster), these methods are good for cases of sparse

adaptation data.

This chapter introduces a new strategy for using clustering to model speaker variability

in speaker adaptation based on MLLR, that aims to take advantage of a range of amounts

of adaptation data, and differs from the previous approaches in two respects. First, it

leverages the benefits of speaker clustering in regression class tree structure design. Second,
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it estimates component MLLR transformations dynamically for each test speaker using the

cluster-specific regression class trees. The speaker clusters are created by clustering held-

out training speakers (not used in acoustic model training) that are represented in the

eigenspace of MLLR transformations of a single acoustic model. A regression class tree is

then trained using the data available from the speakers in each cluster, motivated by the

goal of capturing cluster-specific differences of dialect (or sociolect) or speaking style in the

structure of the trees. This approach is also motivated by the hypothesis that sub-groups of

speakers may achieve improved ASR system performance by using different regression class

tree structures, i.e., that using the wrong structure may lead to lower performance levels.

Evidence supporting this hypothesis is presented in Sec. 5.4 that shows significant ASR

performance gains are achievable by choosing the optimal regression class tree structure for

each target speaker.

In addition, an algorithm is presented that is used on target speakers to produce MLLR

transformations by combining component transformations available from speaker-clustered

regression class trees. The transformations are combined using optimal weights, that maxi-

mize the likelihood of adaptation data by extending the method described in [37] to include

a backoff strategy, and the detailed transformations produce improved ASR performance

across a range of tasks. The algorithm for estimating the optimal weights needs to store only

the component MLLR transformations in memory and a single acoustic model. This re-

sults in reduced memory requirements for our approach, compared to eigenvoices and CAT,

which interpolate component acoustic models and need memory for each one at recognition

time.

5.2 Speaker Clustering for Regression Class Trees

5.2.1 Regression Class Trees

Two divisive clustering approaches were explored for building regression class trees (RCT):

constrained and unconstrained. Both approaches start by estimating multivariate Gaussian

distributions for each triphone state, and collect these to obtain phone-level sufficient statis-

tics. Then, in the constrained approach, a decision tree is designed to cluster the Gaussian
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distributions, choosing from linguistically motivated questions about the center phones to

maximize likelihood of training data, similar to clustering triphone states of HMMs us-

ing decision trees [118]. In the unconstrained approach, a binary tree is built by splitting

the distributions at each level into two clusters, using k-means clustering and a symmet-

ric Kullback-Leibler (KL) distance measure between Gaussian distributions (Eqn. 2.16) as

described in [57]. Both trees are grown to the point where all leaf nodes correspond to a

single phone. The two types of RCT have the same set of leaf nodes but different branching

structure leading to the leaves. For illustration purposes, pruned-versions of the two types

of trees are shown in Fig. 5.1 and 5.2, in which the shaded nodes represent the leaves and

the interior ones the questions learned for the splits. A variant of the unconstrained case

was also explored, where the triphone state-level distributions were directly used in build-

ing the tree, which resulted in the leaves of the tree representing the individual state-level

distributions. This tree is referred to as the unconstrained state-level regression class tree.

The constrained and unconstrained RCTs have the same set of leaf nodes (one leaf for every

phone), but all three RCTs have different branching structure leading to the leaves. Given

limited adaptation data, it is often the case that the estimated transforms correspond to

internal nodes (non-root, non-leaf node), which then leads to different adaptation results as

a function of RCT structure.

5.2.2 Speaker Clustering in MLLR Eigenspace

MLLR transformations represent SD descriptions with reference to an SI model, and are

thus a logical choice for modeling speaker variability. Eigenspace-based MLLR represen-

tations were found to be useful for gender classification [47] and as auxiliary features in

mixtures-of-experts classifiers for speaker recognition [28]. In [14], such representations of

MLLR transformations serve as basis transformations, which are linearly combined using

weights, that maximize the likelihood of a target speaker’s adaptation data, to obtain the

final adaptation transformation. In contrast, the use of such representations of MLLR

transformations in this dissertation is to obtain adaptation-relevant speaker clusters.

First, MLLR transformations are estimated for a large corpus of held-out training speak-
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Figure 5.1: Constrained RCT for English CTS Male

ers, using a single constrained RCT that has R regression classes. Given a d-dimensional

feature vector used in recognition, the MLLR transformations (mean transform, offset vec-

tor) are then vectorized to produce a d(d+1)-length vector, and normalize each dimension to

have zero mean and unit variance. Next, principal component analysis (PCA) is performed

on the vectorized MLLR transformations of all regression classes, except those correspond-

ing to the nonspeech class. For purposes of numerical stability, PCA is performed using

a singular value decomposition on the data matrix [68, 86]. The vectorized transforms are
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Figure 5.2: Unconstrained RCT for English CTS Male

then projected onto the first N principal components, and an RN -dimensional supervector

is formed for each speaker by stacking together the PCA-reduced MLLR transforms for

each of the R classes (excluding the nonspeech class). Finally, k-means clustering is used to

partition the speakers into S clusters, using a Euclidean distance measure between the su-

pervectors. The supervectors capture the speaker-dependent information present in MLLR

transformations, and the clustering groups together speakers who share similar transform

characteristics.
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Given the speaker clusters, a separate RCT is trained, both constrained and uncon-

strained types, for each speaker cluster with the goal of capturing cluster-specific attributes

in the structure of the RCT, or equivalently the appropriate phone groupings for transfor-

mation tying.

Since the training speakers in each cluster are more similar, in MLLR eigenspace, to

speakers of their own cluster than to those of other clusters, it is hypothesized that the

cluster-specific RCT will capture patterns representative of each speaker cluster in the

structure of the RCT. This will produce diversity in RCT structures across clusters. It is

also expected that choosing the appropriate MLLR RCT structure for every speaker should

lead to improved ASR performance. In Section 5.4 evidence is presented that this strategy

does indeed lead to different RCT structures and improved ASR performance results when

using the oracle RCT.

5.3 Task and System Description

Three different ASR systems, based on SRI’s DecipherTMwere used for all experiments

presented in this chapter. The three ASR systems were: (i) English CTS “fast”; (ii) English

BN and (iii) Mandarin BN/BC. All three systems perform unsupervised MLLR (“full” mean

and diagonal variance transformation) once as shown in 4.3 using the two types of regression

class trees described in Sec. 5.2.1 . The rest of the details of the these systems have already

been described in Chapter 4.

Speaker clustering was performed separately for each domain in each language, and for

each gender when gender-dependent acoustic models were used. Three different corpora

were utilized for performing speaker clustering in each domain and language:

• conversations of speakers from the Fisher Phase 2 corpus [20] and recent NIST En-

glish CTS test sets (1998-2002) for use with the English CTS system, which together

included 1186 male speakers and 567 female speakers (120 hours);

• BN in English (25 hours) for use with English BN system; and
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• BN and BC shows in Mandarin (25 hours for each domain) for use with the Mandarin

BN/BC system

The English BN and Mandarin BN/BC corpora were released by the Linguistic Data

Consortium (LDC) in early 2006. The corpora used for speaker clustering was not part

of the acoustic model training data for the different ASR systems. Only the NIST CTS

test sets (1998-2002) and the NIST 2004 English BN test set were used for error analysis.

Evaluation is performed on the NIST 2003 English CTS test set (12 hours), the NIST 2004

English BN test set (6 hours), the NIST 2006 Mandarin BN test set1 (1 hour), and a 2005

Mandarin BC test set2 (2.5 hours).

5.4 Oracle Cluster-Dependent Adaptation

5.4.1 Oracle Performance Improvements

The initial aim was to evaluate potential ASR performance gains from using the “best”

RCT (in terms of word error rate) for individual speakers, choosing from among the ones

produced by the speaker clustering algorithm.

Using the relevant constituents of the corpus in Section 5.3, speaker-clustered RCTs

were trained for English CTS and BN. In the speaker-clustering algorithm, each speaker

was represented by 8 vectorized MLLR transformations, since this produced stable clusters.

Several different values of N , the number of principal components for projecting the vector-

ized MLLR transforms, were experimented with and N = 8 was chosen, since it produced

the most diversity in structure among the cluster-specific RCTs. Diversity of tree structures

is subjectively evaluated by visual examination of splits of phone clusters at the top levels

in the cluster-specific RCTs, which have the most impact on tree structure. In the case of

constrained RCTs, where splits correspond to linguistic questions the most diverse case had

approximately 3 out of 4 questions being different at two levels below the root, across the

different cluster-specific RCTs.

1As used during DARPA GALE Spring 2006 dry run tests.

2Test set prepared by Cambridge University and used for internal evaluations; not released publicly.
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The k-means-based clustering algorithm was set up to produce 4 clusters for each gen-

der (when using gender-dependent acoustic models) in each domain. This ensured that

the speaker partitions had an adequate amount of data to train a cluster-specific RCT,

and also maintained reasonable limits on computational costs of the MLLR transformation

combination algorithm (described later). Next, to estimate the potential maximum ASR

system performance gains from using a cluster-specific RCT the sequence of steps described

in Algorithm 1 are followed.

Algorithm 1 Procedure to compute oracle cluster-dependent WER

1: Speaker Clusters C(S): Perform speaker clustering to produce k clusters, using the
proposed approach and all speakers in S, the training set of a given domain and language.

2: Hold out subset of speakers SH for evaluation purposes, and define the remaining train-
ing speakers as ST = S−SH from the speaker population S. C(SH) is then the clustering
of the speakers in SH.

3: Train constrained or unconstrained RCTs T1, one for each speaker cluster in C(S), using
the data of training speakers in that cluster, excluding the held-out speakers in SH.

4: Speaker Clusters C1(SH): Produce new cluster assignments C1(SH) of speakers in SH,
by re-assigning each to that cluster index of C(S), whose RCT in T1 produces the lowest
WER, after MLLR adaptation.

5: Compute the overall WER for each of these new clusters in C1(SH) using the WER of
each speaker in it and for every cluster-specific RCT in T1.

The held-out subset of speakers SH of Step 2 in Algorithm 1 for English CTS experiments

were drawn from recent NIST English CTS test sets (1998-2002) that were part of the

training data for the speaker clustering algorithm, but not used in training cluster-specific

RCTs, after ignoring around 1% of these speakers for whom there was no difference in ASR

performance among the different cluster-specific RCTs. The results of Algorithm 1 (Step

5), using the unconstrained RCT, are shown in Table 5.1, where the rows represent test sets

for each speaker cluster C1(SH) and the columns the cluster-specific RCT in T1 as defined

in Algorithm 1. By definition, the overall WER of each new cluster in C1(SH), will be the

lowest, using the RCT of its own cluster, compared to that achieved by using the RCT of
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any other cluster. Not surprisingly, the best WER is seen for all cases when the cluster-

specific test set matches its target RCT, i.e., the numbers along the diagonals of the Table

5.1. In addition, the upper bound of potential gains over the SI RCT is in the range of 0.6

to 0.8% (absolute) for the unconstrained RCT. On analyzing the performance numbers for

each speaker, it was noticed that when the cluster-specific test set matches its target RCT,

the error rate for the worst-performing speaker improves by 0.5 to 1.9% (absolute). Similar

observations are made on analysis of the performance figures from the constrained trees,

and are not presented here for brevity.

Table 5.1: Oracle WER(%) for English CTS using unconstrained RCT

Clust 1 Clust 2 Clust 3 Clust 4 SI

Clust 1 20.5 21.2 21.2 21.3 21.3

Clust 2 22.0 21.3 22.1 22.1 21.9

Clust 3 24.1 24.4 23.6 24.0 24.3

Clust 4 21.6 21.8 21.6 20.9 21.7

These experiments were repeated with English BN. Cluster-specific RCTs were trained

using only speakers in 25 hours of English BN data released by LDC in 2006 and tested on

the held-out NIST 2004 English BN test set using the steps of Algorithm 1. The results

are shown in Table 5.2. The trends in performance gains in this case, using oracle cluster

RCT, are similar to that in the case of English CTS. The gains compared to the SI RCT

vary from 0.5% to 0.8%, with the exception of one cluster, which shows no improvement.

The quantitative evidence of ASR performance improvements presented here makes the case

that applying the speaker-clustered RCT to target speakers would achieve improvements in

overall ASR performance of MLLR adaptation.

The clustering of speakers in the held-out sub-set SH changed for many speakers between

Step 1 and 4 of Algorithm 1. Since the assignment of speakers to clusters in C2(ST ) is based

on minimum WER (rather than minimum squared error on transformations), a reclustering

approach based on this criterion was explored, as detailed in Algorithm 2. A new assignment,

C2(ST ), of speaker-clustering training speakers to that cluster whose tree produced the
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Table 5.2: Oracle WER(%) for English BN using unconstrained RCT

Clust 1 Clust 2 Clust 3 Clust 4 SI

Clust 1 14.3 14.8 14.8 14.8 14.8

Clust 2 17.1 16.3 17.2 17.1 17.1

Clust 3 14.6 14.7 14.3 14.8 14.8

Clust 4 16.4 16.7 16.3 16.1 16.1

Algorithm 2 Procedure to compute cluster-dependent WER with retrained RCT

1: Retain training set speakers S, held-out speaker subset SH, rest of the training speak-
ers ST , speaker cluster assignments C(S) and C(SH) and cluster-specific RCT T1 of
Algorithm 1 for a given language and domain.

2: Speaker Clusters C2(ST ): Produce new cluster assignments C2(ST ) of speakers in ST ,
by re-assigning each to that cluster index of C(S), whose RCT in T1 produces the lowest
WER, after MLLR adaptation.

3: Train constrained or unconstrained RCTs T2, one for each speaker cluster in C2(ST ),
using the data of training speakers in that cluster.

4: Compute the overall WER for each of the clusters in C1(SH) using the WER of each
speaker in it and for every cluster-specific RCT in T2.

lowest WER was used, and an unconstrained RCT was retrained for each new cluster, and

the error analysis procedure just described was performed. However, the results from this

analysis (Step 5 of Algorithm 2), shown in Table 5.3, do not exhibit patterns similar to those

in Table 5.1, which indicates the existence of a more complex relationship between speaker

cluster membership and performance obtained from cluster-specific RCT. The difference in

the two sets of results suggests that speaker variability for MLLR adaptation strategies can

be better modeled by speaker clustering in the eigenspace of MLLR transformation, than

by clustering speakers based on minimum WER.

5.5 Analysis of Regression Tree Structure

On manually examining the cluster-specific RCT, it was observed that a different sequence

of questions was used by each constrained RCT, as expected. Since the structure of the
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Table 5.3: Oracle WER(%) for English CTS using reclustering and retraining the uncon-
strained RCT. Lowest WERs in each row are highlighted.

Clust 1 Clust 2 Clust 3 Clust 4 SI

Clust 1 21.2 21.1 21.0 21.1 21.3
Clust 2 21.9 21.9 22.0 21.9 21.9
Clust 3 23.8 23.8 23.9 24.1 24.3
Clust 4 21.4 21.4 21.4 21.4 21.7

RCT describes similarities among clusters of phones (based on phone-level statistics), it

can be conjectured that each cluster-specific RCT reflects dialect or pronunciation patterns

that are representative of its cluster. Further, on comparing the constrained RCT, for each

speaker cluster, it was found that the branches of the trees that split the acoustic units

describing vowels (Figure 5.3) exhibited more differences in the hierarchical structure than

the branches involving consonants, which is consistent with linguistic studies on regional

variation in American English [55]. For example, the relative proximity of “ao” and “aa”

in the upper tree of Figure 5.3 compared to that in the lower tree is perhaps indicative of

dialectal variation. The unconstrained RCT had structures that were considerably different

from those of the constrained RCT and, across clusters, exhibited more diversity in structure

details than the constrained ones, as illustrated in Figure 5.4.

5.6 Soft Regression Class Trees

5.6.1 Maximum Likelihood Weights for Transform Combination

The experiments in Section 5.4 serve as proof of concept that choosing the best RCT can

lead to improved ASR performance, where the optimal RCT is determined for a test speaker

by evaluating ASR performance for every cluster-specific tree. However, for actual ASR

evaluations, an unsupervised method is needed to determine the optimal tree to use for a

test speaker. The following approaches are compared: i) choosing a single RCT using a

maximum likelihood (ML) criterion vs. ii) estimating weights for a linear combination of

the MLLR transformations, where the weights are estimated to maximize the likelihood of
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a speaker’s adaptation data.

Combinations of multiple MLLR transformations using maximum likelihood (ML) weights

have been proposed previously [8,31,91]. The component MLLR transformations have been

estimated dynamically for test speakers using different nodes within a single RCT [31],

or pre-computed for speaker clusters using various techniques [8], in both cases using a

single RCT. The weights for combining the component MLLR transformations are esti-

mated dynamically using an ML approach given a test speaker’s adaptation data [8,31], or

pre-computed using an ML approach on a corpus of training speakers [37]. The approach

described here uses a test speaker’s adaptation data to compute the component MLLR

transformations, but relies on cluster-specific RCTs that are trained offline. The optimal

weights to combine the component transformations are estimated to maximize the likelihood

of the test data, as described below.

Define the transformed mean vector of the m-th Gaussian as

µ̂m = M̂mα̂(l)

where

M̂m = [µ̂(1)
m · · · µ̂(S)

m ], µ̂(s)
m = Ŵ(s,r)ξm,

and Ŵ(s,r) is the transformation associated with the r-th regression class of the s-th speaker

cluster on the extended mean vector ξm. The RCT used in this work clusters triphone states

with the same center phone at leaf nodes. This implies that the l-th leaf node on each RCT

corresponds to the same Gaussian distributions, and the weights for combining MLLR mean

transformations can be tied at the leaf nodes across the S trees. The weights α̂
(l)
s for the

s-th RCT at l-th leaf node are represented by

α̂(l) = [α̂
(l)
1 · · · α̂

(l)
S ]T
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The auxiliary function of interest is:

Q(M,M̂) = K −
1

2

R
∑

r=1

Cr
∑

c=1

Mc
∑

m=1

T
∑

τ=1

γm(τ)
(

o(τ) − µ̂m

)T

Σ−1
m

(

o(τ) − µ̂m

)

, (5.1)

where K is a normalization constant, R is the number of regression classes containing Cr

mixture Gaussian distributions, each of which has Mc component Gaussian distributions;

o(τ) is the observation vector at time τ ; and γm(τ), µ̂m and Σ−1
m are the occupation prob-

ability at time τ , mean vector, and inverse covariance of the mth Gaussian distribution,

respectively. Using a procedure similar to that of [31], the weights α̂
(l)
s can be estimated by

first differentiating Eqn. 5.1 with respect to α̂
(l)
s , which results in Eqn. 5.2

[

R
∑

r=1

Cr
∑

c=1

Mc
∑

m=1

T
∑

τ=1

γm(τ)µ̂(s)T
m Σ−1

m M̂m

]

α̂(l) =
R

∑

r=1

Cr
∑

c=1

Mc
∑

m=1

T
∑

τ=1

γm(τ)µ̂(s)T
m Σ−1

m o(τ) , (5.2)

which can be further represented as a set of simultaneous equations as shown in Eqn. 5.3

Z(l)α̂(l) = V(l) . (5.3)

where Z is a S × S matrix and V is a S × 1 vector. Each row of Z and the corresponding

element of V represents the left and right side, respectively, of Eqn. 5.2 that is obtained by

differentiating Eqn. 5.1 with respect to each weight α̂
(l)
s .

The maximum likelihood solutions for the weights do not require constraints that the

weights be positive or sum to one, i.e., as would be the case if they were interpolated

as a mixture. However, to handle instances when numerical instability (e.g., inversion of

matrix Z(l) fails)3leads to bad estimates of weights, Lagrange multipliers, λ(l) and β
(l)
s , are

3If the structure of the cluster-specific RCTs are similar, then the rows of Z will be nearly identical
(numerically) as computed using Eqn. 5.2. In such cases the inversion of Z may fail.
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introduced into the objective function of Eqn. 5.1 to obtain Eqn. 5.4:

Q(M,M̂) = K −
1

2

R
∑

r=1

Cr
∑

c=1

Mc
∑

m=1

T
∑

τ=1

γm(τ)
(

o(τ) − µ̂m

)T

Σ−1
m

(

o(τ) − µ̂m

)

+
L

∑

l=1

λ(l)(
S

∑

s=1

α̂(l)
s − 1) + β(l)

s (α̂(l)
s ≥ 0) . (5.4)

To solve for the transform mixing weights α̂
(l)
s a simple method is employed that explores

only the possibilities that arise by setting one inequality constraint active at a time4to cover

2S possible cases when there are S constraints. When a particular inequality constraint

becomes active, its corresponding weight is set to zero and the remaining non-zero weights

are solved under the constraint that they sum to one. Under this assumption, Eqn. 5.4 can

be reduced to Eqn. 5.5, with the appropriate weights set to zero.

Q(M,M̂) = K −
1

2

R
∑

r=1

Cr
∑

c=1

Mc
∑

m=1

T
∑

τ=1

γm(τ)
(

o(τ) − µ̂m

)T

Σ−1
m

(

o(τ) − µ̂m

)

+
L

∑

l=1

λ(l)(
S

∑

s=1

α̂(l)
s − 1) . (5.5)

Differentiating with respect to α̂
(l)
s ,

δQ(M,M̂)

δ
ˆ

α
(l)
s

=
R

∑

r=1

Cr
∑

c=1

Mc
∑

m=1

T
∑

τ=1

γm(τ)
(

µ̂(s)T
m Σ−1

m M̂mα̂(l) − µ̂(s)T
m Σ−1

m o(τ)
)

+ λl . (5.6)

Setting the right hand side of Eqn. 5.6 to zero,

[

R
∑

r=1

Cr
∑

c=1

Mc
∑

m=1

T
∑

τ=1

γm(τ)µ̂(s)T
m Σ−1

m M̂m

]

α̂(l) =
R

∑

r=1

Cr
∑

c=1

Mc
∑

m=1

T
∑

τ=1

γm(τ)µ̂(s)T
m Σ−1

m o(τ) − λl .

(5.7)

4Setting an inequality constraint active implies making it an equality
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Eqn. 5.7 can be re-written as,

zi
(l)α̂(l) = v

(l)
i − λl , (5.8)

where zi is the ith row of the S×S matrix Z and vi is the ith dimension of vector v. Solving

for lth Lagrange multiplier we get,

λl =

∑S
i=1

(

zi
−1 · v − λl

∑S
j=1 zij

)

− 1
∑S

i=1

∑S
j=1 zij

. (5.9)

The weight α̂(l) can be estimated from,

α̂(l) = Z(l)−1
(

v(l) − λl

)

(5.10)

This weight estimation is process is continued, till a set of non-zero weights are found that

also satisfy the inequality constraint, i.e. they are less than one.

5.6.2 Backoff Strategy

For each test speaker, a two-step ML weight estimation procedure is applied. First, the

mean and diagonal variance MLLR transformations are estimated for every cluster-specific

RCT from HMM state occupancy statistics collected using the speaker’s adaptation data

and the unadapted SI acoustic model. Next, we determine the cluster-specific RCT that

produces the highest gain in likelihood on the adaptation data using the acoustic model

adapted by its corresponding MLLR mean and diagonal variance transformations. Then,

using this adapted acoustic model, we reestimate the HMM state occupancy statistics, which

are subsequently used for estimating the mean transformation smoothing weights, without

any inequality constraints (first step) (as described in Section 5.6.1) and its corresponding

diagonal variance transformation, and determine its likelihood gain on the adaptation data.

If the gain is less than the best gain from the cluster-specific RCTs, we re-estimate the

smoothing weights with inequality constraints (second step), and its corresponding diagonal

variance transformation. Depending on the set of smoothing weights chosen, either from
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the first or the second step, its corresponding combined mean transformations and diagonal

variance transformations are used to adapt the SI acoustic model.

5.6.3 Computation Requirements

Compared to standard MLLR adaptation with a single transform, the computational cost

of adaptation using multiple cluster-dependent RCT structures increases linearly with the

number of clusters. With S clusters, there are S + 1 transformations estimated (including

one for the SI RCT). For example, if there is only one iteration of MLLR estimation and

the backoff strategy (Sec. 5.6.2) is not used, then the state occupancy statistics from the

SI model are used for estimating transformations for each cluster-specific RCT, and the

total computational cost of estimating the MLLR transformations is S + 1 times that of

using only the SI RCT. As mentioned in Sec. 5.6.1, the ML weights are only estimated

for those nodes in the cluster-specific RCTs that represent equivalence classes, in terms of

the SI Gaussian distributions they cluster, such as the set of leaf nodes of each tree. The

added cost of ML weight estimation for combining the transformations is negligible, since

there are far fewer weights to estimate than transformation parameters. For example, for

the unconstrained and constrained RCTs, which have as many leaves as phones in the SI

acoustic model, one weight needs to be estimated for each leaf node of each cluster-specific

RCT. For an ASR system with 45 phones and 4 cluster-specific RCTs the total number of

weights that need to be estimated is 180. On the other hand a typical MLLR full mean

transformation, for a 39-dimensional feature vector needs 1560 parameters to be estimated.

The memory requirements are twice that of standard MLLR, since two acoustic models

are stored in memory: the SI acoustic model to estimate state occupancy counts, and an

adapted acoustic model, obtained by applying cluster-specific MLLR transformations to

the SI acoustic model and used to compute overall likelihood gain from the cluster-specific

RCTs. Compared to approaches such as eigenvoices, that combine multiple models and need

to store each component acoustic model in memory, our approach also has much smaller

memory requirements. Since weight estimation requires computing likelihoods with each

component model, and this dominates the computational costs in transform estimation, the
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overall cost of the two approaches is similar.

5.7 Recognition Experiments with Soft Regression Trees

5.7.1 Baseline Regression Class Tree Performance

We first present the baseline ASR system performance after MLLR adaptation (as described

in Sec. 5.3) when using the different types of RCTs trained for this work. As mentioned

before we examined four different types of RCTs: constrained, unconstrained, unconstrained

state-level and a manually designed tree (using knowledge of acoustic phonetics as described

in Sec. 5.3). Tables 5.4 and 5.5 show the ASR system performance (WER) improvements

obtained using each of these trees for the 2004 English BN and 2003 English CTS test sets

respectively. In row 1 of Tables 5.4 and 5.5, “Unconstr.” refers to the unconstrained type

RCT, “Unconstr. State” refers to the unconstrained state-level type RCT, “Constr.” refers

to the constrained type RCT and “Manual” refers to the manually designed RCT. In the

same tables, row 2 refers to the WER of the adaptation hypothesis (“Adapt Hyps”) used

for MLLR adaptation and row 3 refers to the WER after MLLR adaptation (“MLLR”).

Table 5.4: WER(%) after MLLR adaptation using 4 different RCT building schemes on
2004 English BN test set

Unconstr. Unconstr. State Constr. Manual

Adapt Hyps 17.9 17.9 17.9 17.9
MLLR 15.9 15.9 15.9 16.0

Table 5.5: WER(%) after MLLR adaptation using 4 different RCT building schemes on
2003 English CTS test set

Unconstr. Unconstr. State Constr. Manual

Adapt Hyps 23.1 23.1 23.1 23.1
MLLR 21.5 21.4 21.4 21.4

The results presented in Tables 5.4 and 5.5 show that the performance improvements
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obtained from each of the three types of automatically-built RCTs: unconstrained, uncon-

strained state-level and constrained, are similar. Among these three cases, the unconstrained

state-level type RCTs have higher degrees of freedom (or number of leaf nodes) since each

of its leaf nodes represent a triphone HMM state, compared to the unconstrained and con-

strained type RCTs, which have one leaf per phone5. It is hypothesized that the higher

degrees of freedom will make the resulting RCT less stable than the phone-based trees

and thus more sensitive to over-training and errorful adaptation hypothesis. In a pilot

experiment with the 2004 English BN test set, we saw evidence of over-training with the

unconstrained state-level type RCT that resulted in larger improvements in overall like-

lihood of the adaptation data, but lower ASR system performance improvements due to

MLLR adaptation. Due to this, we will only focus on the unconstrained and constrained

type RCTs for subsequent ASR experiments. We chose to explore both of these types be-

cause they lead to very different tree structures, which might impact the effectiveness of the

multi-tree combination.

5.7.2 Average ASR Performance Results

To evaluate the performance of the two-step ML procedure for combining MLLR transfor-

mations from speaker-clustered RCT, its performance was tested on a range of standard

NIST test sets. As mentioned in Section 5.4, for each domain, 4 cluster-specific RCTs were

trained for each of three types: constrained, unconstrained, and unconstrained state-level

types. The transformations were combined using the two-step ML procedure. In Tables 5.7,

5.8 and 5.9, the columns denoted by “Unconstr.”, “Constr.” and “Unconstr. state-level”

refer to the unconstrained, constrained and unconstrained state-level RCT, respectively.

The row labels refer to experiment configurations which are explain in Table 5.6.

Table 5.7 shows the results of experiments that were run with the NIST 2003 English CTS

test set and the CTS-domain specific RCT. The results show small improvements of 0.1%

to 0.2% (absolute) for both kinds of RCTs, using the two-step ML procedure, compared to

using only one SI RCT. Only the improvement of 0.2% (absolute) for the configuration “Soft

5For the ASR system used in this work, there were 3129 HMM states (for the English BN system) while
the number of phones was only 45.
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Table 5.6: Various configurations for ASR experiments.

Experiment Name Experiment Configuration

Adapt Hyps WER of adaptation hypothesis

SI
speaker-independent, automatically-derived
RCT

Soft SC (root)

multiple speaker-clustered RCT with MLLR
transformation combination weights tied at
the root of the cluster-specific trees (global
weights)

“Soft SC (leaves)” and “Soft SC”
multiple speaker-cluster RCT with weights
tied at the leaves of the cluster-specific trees

ML SC
cluster-specific RCT that achieves the highest
likelihood gain on adaptation data

Soft SC + No adapt
cluster-specific RCTs with the an extra weight
for the case of no adaptation

Oracle SC
cluster-specific RCT that achieves the lowest
WER

SC (leaves)” using the unconstrained RCT is significantly different from the “SI” case (p <

0.01)6. The difference in performance associated with tying the weights, at the root vs. at

the leaves of the cluster-specific RCT is not significant. However, given that speakers usually

have enough data to estimate weights at the leaves, and this method gave slightly better

results, we picked the leaf-based weight-tying configuration for all subsequent experiments in

6Unless otherwise noted, significance tests on recognition results use a matched pair sentence segment
test.
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other domains. The “ML SC” configuration did not achieve better performance than “Soft

SC (leaves)”, while the performance of “Oracle SC” confirms our observation in Section 5.4

that the overall WER can be reduced significantly by choosing the optimal RCT.

Table 5.7: WER(%) using speaker-clustered RCT for the 2003 English CTS test set

Unconstr. Constr.

Adapt Hyps 23.1 23.1
SI 21.5 21.4
Soft SC (root) 21.4 21.4
Soft SC (leaves) 21.3 21.3
ML SC 21.3 21.3
Soft SC + No adapt 21.4 21.2

Oracle SC 20.8 20.9

Similar experiments were run with the NIST 2004 English BN test set using the speaker-

clustered RCT trained on the BN training data. The results are shown in Table 5.8, where

we can see that the “Soft SC (leaves)” configuration is able to achieve small improvements

over the baseline (manually designed) RCT and the SI RCT in the range of 0.1%-0.2%

(absolute) for both kinds of RCT, though these are not statistically significant.

Table 5.8: WER(%) using speaker-clustered RCT for the 2004 English BN test set

Unconstr. Constr.

Adapt Hyps 17.9 17.9
SI 16.0 15.9
Soft SC (root) 15.9 15.9
Soft SC (leaves) 15.9 15.8

ML SC 15.9 15.9
Soft SC + No adapt 15.9 15.8
Oracle SC 15.2 15.3

The performance of the speaker-clustered RCTs was tested on the NIST 2006 Mandarin

BN and 2005 BC (development) test sets using the Mandarin BN/BC ASR system. The

results are shown in Table 5.9, where the constrained SI RCT achieved improvements of 0.3%
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(absolute) for both test sets, compared to the baseline (manually designed7) RCT, which are

statistically significant at the level of p < 0.002. The use of unconstrained speaker-clustered

RCT (“Soft SC”) results in improvements of 0.2% (absolute) for the NIST 2006 Mandarin

BN test set (significant, p < 0.012) and 0.6% (absolute) for the 2005 Mandarin BC (dev)

test set (significant, p < 0.001). The use of constrained speaker-clustered RCT did not

result in significant improvements8. As in the case of the speaker-clustered RCTs for the

English domains, the cluster-specific constrained RCTs for Mandarin exhibited differences

mainly in the vowel branches, and the structure of the cluster-specific unconstrained RCTs

shows more diversity compared to the constrained RCTs.

Table 5.9: WER(%) using speaker-clustered RCT for the 2006 Mandarin BN and 2005 BC
(dev) test sets

2006 Mandarin BN 2005 Mandarin BC

Unconstr. Constr. Unconstr. Constr.

Adapt Hyps 9.6 9.6 22.6 22.6
SI 7.5 7.7 20.3 20.4
Soft SC 7.3 7.8 19.7 20.4

Soft SC + No adapt 7.2 7.8 19.7 20.4

Finally, we experimented with adding an identity MLLR mean transformation when

estimating the ML weights. The identity transformation represents the case of “no adapta-

tion” and is referred to as “Soft SC + No adapt” in Tables 5.7, 5.8 and 5.9. The motivation

for these experiments is our observation in previous work [65,66] that 10-15% speakers have

lower ASR system performance from using MLLR adaptation in the case of English CTS.

This experiment is able to achieve small improvements (0.1% absolute) with the constrained

type RCT for 2003 English CTS test set and the unconstrained type RCT for 2006 Mandarin

BN test set, compared to the “Soft SC” case.

7The manually designed RCT had three leaf classes: vowels, consonants and nonspeech organized into a
tree.

8The linguistic question set that is used for building the constrained RCT is not as richly developed for
Mandarin as is the case for English, which provides an explanation for the better ASR performance when
using the unconstrained RCT in the Mandarin case.



60

5.7.3 Performance Analysis of Two-Step ML Weight Estimation

As mentioned earlier, this work extends the weight estimation framework of [37] by intro-

ducing a two-step ML weight estimation procedure with or without inequality constraints,

mainly for the purposes of numerical stability. We compared the performance of the two-step

procedure to the one-step procedure that used unconstrained ML weights for combination

of cluster-specific MLLR mean transformations. The results shown in Table 5.10 indicate

that the two-step procedure indeed produces better ASR performance, compared to the

one-step procedure in all cases. The one-step procedure is not stable, and performance is

worse on average than when using a single SI RCT.

Table 5.10: Comparison of performance [WER(%)] using two-step or one-step ML weight
estimation (2004 English BN and 2003 English CTS test sets)

2004 English BN 2003 English CTS

Unconstr. Constr. Unconstr. Constr.

SI 16.0 15.9 21.5 21.4
One step 16.6 16.5 22.1 22.0
Two step 15.9 15.8 21.3 21.3

5.7.4 WER Distribution Analysis

Since the overall gains from using speaker-clustered RCT are small, an error analysis was

performed on the various experiments on the NIST 2003 English CTS and 2004 English

BN test sets to investigate whether there are marked differences in the distribution of the

WERs by speaker. Such an analysis is motivated by a desire for adaptation methods that

give robust improvements across speakers, e.g., reducing the number of cases where MLLR

adaptation hurts ASR system performance.

In Figures 5.5 and 5.6, the speakers in the NIST 2004 English BN (234 speakers) and

2003 English CTS (144 speakers) test sets were ordered by the duration of adaptation

data.9 In Figure 5.7 speaker-level analysis of WER change from adaptation, relative to the

9Total length of waveforms after segmentation.
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unadapted case, is shown with the same ordering of speakers as in Figure 5.5, using both

the SI RCT (left) and speaker-clustered RCT (right) for speakers in the NIST 2004 English

BN test set. The points where relative WER change is greater than zero correspond to

cases when MLLR adaptation hurts ASR performance. The plots in Figure 5.7 indicate

that, contrary to expectations, not all speakers benefit from MLLR adaptation. Further

the amount of adaptation data is not a good predictor of performance gains (or losses)

from adaptation for a specific speaker, though there is a trend of increased variance of

performance change from adaptation as the amount of adaptation data decreases. It can

also be seen in Figure 5.7 that fewer speakers have performance losses (relative WER change

> 0) when the speaker-clustered RCT is used in adaptation. Similar trends are observed

for speakers in the NIST 2003 English CTS test set, though most speakers there have more

than 100 seconds of speech, rendering the increased variance trend less clear.

0 50 100 150 200

0
10

0
20

0
30

0
40

0
50

0

Speaker Ordering

speakers

se
co

nd
s 

of
 a

da
pt

at
io

n 
da

ta

Figure 5.5: Speakers ordered by amount of adaptation data in seconds (2004 English BN
test set)

Based on the error reductions with the oracle cluster-specific RCT in Section 5.4 and the

trends seen in Figure 5.7 for English BN, it can be concluded that using multiple speaker-
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Figure 5.6: Speakers ordered by amount of adaptation data in seconds (2003 English CTS
test set)
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Figure 5.7: Relative change in WER for all speakers in the NIST 2004 English BN test set,
ordered by decreasing amount of adaptation data.
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clustered RCT leads to more robust adaptation strategies, compared to a single SI RCT.

Quantitative evidence for this conclusion is presented in Tables 5.11 and 5.12, which

show the difference between the percentage of speakers that benefit from adaptation and

the percentage of speakers that are hurt by it (the “net benefit” of adaptation), using

different adaptation strategies for both the NIST 2004 English BN and the 2003 English

CTS test sets. The different configurations are (rows 3 through 6): SI RCT (SI), the

cluster-specific RCT that achieves the highest gain of likelihood on adaptation data (ML

SC), multiple speaker-clustered RCT (Soft SC), and the RCT that achieved the lowest WER

(Oracle SC). The net benefits are reported for different speaker subsets (columns 2 through

7): all speakers (“All”), speakers who achieve more than 5% relative WER reduction (or

increase) from adaptation (“Rel. 5%”), and speakers whose WER reduction (or increase)

from adaptation was significant at the level of p < 0.15. Denoting the WER for a speaker

obtained using the SI RCT by pSI and that obtained using any other configuration by pX ,

the difference in WER is significant at the level of p < 0.15 if

pX /∈ [pSI + ε, pSI − ε]

where ε = 1.0364

√

pSI(1−pSI)
n

and n is the number of words spoken by the speaker. Note this

is a simple, weaker significance test than the matched pairs test used with earlier results. A

significance threshold of p < 0.15 was chosen since few speakers satisfy higher significance

thresholds because the number of words for an individual speaker is small. Still, this is a

stricter criterion for WER change than the simple relative difference of WERs.

It can be seen in Table 5.11, for both the NIST 2004 English BN and 2003 English

CTS test sets, that the net percentage of speakers benefiting (or benefiting significantly at

the level of p < 0.15) in the “Oracle SC” case is substantially higher than in the SI case,

confirming the previous observation that the optimal RCT structure varies across speakers.

Table 5.11 also shows that using multiple speaker-clustered RCTs, a greater net percentage

of speakers benefit from adaptation, compared to both “SI” and the “ML SC” cases. In

the case of English BN, the percentage of speakers significantly net benefiting from “Soft

SC” is twice that in the “SI” case, while for English CTS the same difference is almost 30%
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higher in the “Soft SC” case, compared to the “SI” case.

The distributional information for the speakers with significant performance differences

for different adaptation methods is shown graphically in Figures 5.8 and 5.9 with the order-

ing of speakers the same as in Figures 5.5 and 5.6, respectively. Again, it is observed that

fewer speakers are hurt by adaptation with “Soft SC”. In Figure 5.8, which gives results

for English BN, there is one speaker who shows a large relative performance loss (59%).

On examining the performance patterns for this speaker, it is observed that while this is a

“difficult” speaker for adaptation, it is not for ASR on the whole. The speaker’s unadapted

WER is 12.2%, compared to 19.5% using any of the RCT configurations that were exper-

imented with. This speaker is particularly disfluent, but the unusually poor performance

is most likely due to the fact that he is grouped in a cluster with another speaker that has

a lot of background noise (keyboard clicks, etc.) that can negatively affect the adaptation

transformations. This finding motivates some of the features explored in Chapter 7 for

complexity control of MLLR adaptation.

The same analysis was performed for only those speakers who had less than 120 seconds

of adaptation data in both the NIST 2004 English BN (190 speakers) and 2003 English CTS

(24 speakers) test sets. The results, shown in Table 5.12, indicate that for speakers with

less adaptation data, using speaker-clustered RCT in adaptation is again a better choice

than both “SI” and “ML SC” cases. The impact is particularly notable for English CTS

where the net percentage of speakers significantly benefiting from “Soft SC” is twice that in

the “SI” case. This indicates that using speaker-clustered RCT with MLLR leads to ASR

performance gains that are robust to cases with varying amounts of adaptation data, as is

also evident from Fig. 5.8 and 5.9.

The information shown in Figure 5.7 is presented again in Figure 5.11, with the only

difference being that the speakers are now ordered by their unadapted WER (ordering

shown in Figure 5.10). The graphs in Figure 5.11 indicate that the unadapted WER is only

a weak predictor of performance gains from MLLR adaptation, with correlation coefficients

being 0.04 and 0.03 for “SI” and “Soft SC” cases, respectively. In Figure 5.12, only those

speakers are shown whose relative WER change from adaptation is significant (at the level

of p < 0.15) with the same ordering of speakers as in Figure 5.10. On computing the average
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Table 5.11: Net benefit (%) analysis of all speakers in English CTS and BN

NIST 2004 English BN NIST 2003 English CTS

All Rel. 5% p < 0.15 All Rel. 5% p < 0.15

SI 24.1 18.2 5.0 67.2 38.5 24.5
ML SC 25.9 20.5 6.4 60.1 43.4 29.4
Soft SC 32.2 27.8 10.0 59.4 41.3 31.4
Oracle SC 62.2 54.1 18.6 87.4 67.1 44.8

Table 5.12: Net benefit (%) analysis of speakers with less than 120 seconds of speech in
English BN and CTS

NIST 2004 English BN NIST 2003 English CTS

All Rel. 5% p < 0.15 All Rel. 5% p < 0.15

SI 22.1 15.3 4.2 41.7 25.0 12.5
ML SC 20.0 16.8 5.3 58.3 37.5 20.8
Soft SC 29.0 24.8 8.9 50.0 50.0 25.0
Oracle SC 58.4 50.5 16.3 75.0 50.0 33.3

relative performance loss (WER increase), for the speakers who have a loss in performance, it

was observed that the case of using speaker-clustered RCT had a lower average performance

loss (11% vs. 18 %), compared to the case of using the SI RCT.

5.7.5 Performance Analysis of ML weights

To understand the behavior of the ML weight estimation procedure we compared its per-

formance when combining MLLR mean transformations estimated from the same RCT and

when combining MLLR mean transformations from cluster-specific RCTs. We conducted

ASR experiments with the 2004 English BN, 2006 Mandarin BN and 2005 Mandarin BC

test sets and the SI unconstrained type RCT for each. The results of these ASR experiments

are shown in Table 5.13. We first applied the data threshold on the amount of adaptation

data to determine the regression classes in the SI RCT and the set of initial MLLR trans-

formations to use. The results of using the SI RCT is shown in row 3 (“SI”) of Table 5.13.

Then, we explored two possibilities to smooth the initial MLLR mean transformations with
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Figure 5.8: Significant (p < 0.15) performance changes of speakers from adaptation with
various tree configurations (NIST 2003 English BN test set)

ML estimated weights: with mean transformations from one level up in the SI RCT, and

with mean transformations up to two levels up in the SI RCT, which are shown in row 4

(“SI + One level”) and row 5 (“SI + Two levels”) respectively in Table 5.13 and row 6

(“Soft SC”) refers to the results of using the cluster-specific RCT. For all three test sets,

the “SI + One level” and the “SI + Two levels” cases do not show better performance over

the “Soft SC” case and for the 2004 English BN test set the performance of “SI + One

level” and “”Soft SC” are the same. More importantly, for the 2006 Mandarin BN and

2005 Mandarin BC test sets, the “SI + One level” and “SI + Two level” cases show lower

performance improvements from MLLR adaptation, compared to the “SI” and “Soft SC”

cases. Since larger relative performance improvements is achieved by the “Soft SC” case

compared to the “SI” case for these the two Mandarin test sets it provides evidence that

the performance improvements obtained by combining MLLR mean transformations from

multiple cluster-specific RCTs using ML weights is due to the differences in RCT structures
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Figure 5.9: Significant (p < 0.15) performance changes of speakers from adaptation with
various tree configurations (NIST 2003 English CTS test set)
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Figure 5.10: Speakers ordered by decreasing unadapted WER (2004 English BN test set).
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Figure 5.11: Effect of unadapted WER on adaptation success (2004 English BN test set);
speakers are ordered by decreasing unadapted WER.

and not only due to the ML weights themselves. In the case of the 2005 Mandarin BC test

set, the structures of the cluster-specific RCTs are perhaps able to capture variations of

dialect or register10 in conversations.

Table 5.13: WER(%) using ML weights to smooth MLLR mean transformations with those
from higher nodes in the SI unconstrained RCT

WER(%)

2004 English BN 2006 Mandarin BN 2005 Mandarin BC

SI 15.9 7.5 20.3
SI + One level 15.9 7.8 20.5
SI + Two levels 16.5 8.1 21.1
Soft SC 15.9 7.3 19.7

10Register is the formality of speaking situation and how familiar the speakers are with others.
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Figure 5.12: Speakers with significant (p < 0.15) performance change from adaptation
(NIST 2004 English BN test set); speakers are ordered by decreasing unadapted WER.

5.8 Discussion

In MLLR-based speaker adaptation, the conventional approach to designing speaker-specific

adaptation strategies is to use a global RCT for all speakers to decide on the regression

classes (MLLR transformations) to use. Evidence is presented here that this approach

sometimes leads to WER increases, and more robust performance across a population of

speakers is possible by modeling speaker variability in designing speaker-specific adaptation

strategies. A speaker clustering algorithm was introduced that models speaker variability

by partitioning a large corpus of speakers in the eigenspace of their MLLR transformations,

and captures the speaker variability information in the diversity of the structures of RCT

trained for each speaker cluster. By choosing the optimal cluster-specific RCT to use for each

individual test speaker, it is possible to achieve significantly lower overall WER, compared

to the case where a global RCT is used, and there is also a smaller variance in error rates

across speakers. On examining the different RCT structures produced, in the case of the
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constrained RCT, it is noticed that more diversity was exhibited by the vowel branches than

the consonant branches, which is conjectured to be indicative of dialectal variations in the

training speaker population.

To take advantage of the speaker-clustered RCT in evaluating ASR systems, a procedure

is developed that linearly combines MLLR transformations for a given speaker, estimated

for each cluster-specific RCT, with weights that are estimated by maximizing the likelihood

of the adaptation data in the framework of a two-step ML procedure that estimates weights

with and without inequality constraints. The two-step ML procedure produces small im-

provements, compared to using only one SI RCT, for both English BN and CTS tasks, and

larger improvements for Mandarin BN and BC test sets. Further, it is observed that the use

of speaker-clustered RCT leads to ASR performance gains that are robust to the amount

of adaptation data and the unadapted WER. As the amount of adaptation data decreases,

regression classes are chosen higher up in the RCT (based on a given data count threshold),

but the tying across phone classes differs depending on the RCT structure. This results

in diverse MLLR transformations being linearly combined by the two-step ML procedure,

and explains the robustness of WER gains from adaptation across a range of conditions. It

is also observed that the speaker-clustered RCTs benefited a majority of the speakers who

were hurt by MLLR adaptation with a single SI RCT, and reduced the average performance

loss for those speakers who were hurt by MLLR.

In future work, it may be useful to relax the constraint that the speaker clustering

data be disjoint from the acoustic model training set. While the strategy adopted in this

paper avoids bias, it might turn out to be unnecessary in practice. By using a much larger

speaker population in clustering, it is hoped to more diverse structures will be learned in

the ensemble of RCTs, further improving robustness of the proposed method.
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Chapter 6

TREE-LEVEL RCT COMPLEXITY CONTROL

The research presented in Chapter 5 focused on learning RCT structures for particular

speaker clusters. Another important problem in the context of MLLR speaker adaptation

is the online complexity control to determine the complexity of adaptation, or number of

adaptation transformations, to estimate for target speakers. The standard solution for this

problem is to descend down the regression class tree to those nodes that satisfy a pre-

determined threshold on the amount of adaptation data available in that node and estimate

a transformation for each such node. In this chapter, evidence is presented that data-driven

pruning does not yield the best regression class tree size (number of regression classes), and

that significant gains in WER, compared to the standard approach, are achievable by choos-

ing the oracle number of regression classes, which may include no adaptation. Previous work

on online complexity control have investigated solutions that overcome the limitations of

only considering amount of adaptation data - indirectly in [110] where a minimum descrip-

tion length (MDL)-based solution is proposed and directly in a cross-validation approach

in [31] - but are computationally expensive. It is hypothesized that higher ASR performance

improvements from MLLR adaptation can be obtained by a less costly predictor of regres-

sion class tree complexity based on features of the adaptation hypothesis. An automatic

solution is proposed that predicts the best regression class tree size, if any, for a speaker

by using standard statistical learning paradigms and speaker-level information sources that

include acoustic-based and recognizer-based features. While the pilot study in Chapter 3

showed that speaker-level features are only weak predictors of potential ASR system per-

formance gains from MLLR adaptation, the experiments were performed with a fixed size

RCT. The work presented in this chapter investigates the possibility that these features

might provide additional information over amount of adaptation data alone for predicting

RCT size, i.e., the online complexity of adaptation.
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6.1 Task and ASR System

The research results presented in this chapter is based on experiments on English CTS.

The NIST benchmark test set corpus for English CTS was split into two parts: a training

set, comprising the Switchboard and Fisher speakers in benchmark test sets of 1998, 2000,

2001, 2002, and 2003 (464 speakers total) and a test set, comprising the test set of 2004

(72 speakers total). The acoustic data in all these test sets was not used for acoustic model

training purposes.

The ASR system used in this work was the full version of the English CTS system

described in Sec. 4.1 and shown in Fig. 4.1. The system uses unsupervised MLLR in five

decoding steps and exchanges adaptation hypotheses between the two different front ends

– MFCC and PLP – to perform cross-system adaptation. For the purposes of description,

the five instances of application of MLLR adaptation are split in two groups: the “early”

stage comprising Steps 5 & 7 and the “later” stage comprising Steps 9(1,2,3). The final

performance level of the system, is determined from the system combination outputs, after

Step 9(1,2,3) and, in terms of WER it was 18.6% on the NIST RT 2004 English CTS test

set.

6.2 Baseline Regression Class Tree

The ASR system used a baseline regression class tree that was manually constructed based

on prior knowledge of acoustic phonetics. The tree, which has 9 leaf classes, is shown in

Fig. 6.1, which employs a hierarchical back-off strategy, when less than 2 seconds of data is

available for a regression class. However, a sufficient amount of data was available for the

nine phonetic classes for most speakers, and the back-off mechanism was rarely needed. It

is trivial to construct a tree with six clusters by pruning back some nodes in the tree.

6.3 Best Tree Sizes

Five different regression class trees, each with different number of leaves, were constructed.

The tree sizes were 3, 6, 7, 9, or 11 leaves, which corresponded to the number of number of

regression classes for each, since the data threshold was set low enough at 2 seconds. A final
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Figure 6.1: Regression class tree for phone clustering.

possibility is the use of unadapted speaker-independent models. The default case is to use

the tree with nine regression classes in all stages in the ASR system, when MLLR adaptation

is performed. Choosing a different size tree can be thought of as using a more sophisticated

back-off to determine the transforms in addition to data-driven pruning. To determine the

best tree size for each speaker, recognition experiments were performed for each available

regression class tree size for each of the steps in the system that used unsupervised MLLR.

Focusing on two NIST English test sets, Table 6.1 shows that significant gains in over ASR

system performance can be achieved if the best regression class tree size can be determined

for each target speaker.

Table 6.1: WER(%) with oracle regression class tree sizes.

Test Set Default Oracle

eval2004 18.6 17.4
eval2003 18.9 17.9
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Analysis of the speakers in the training portion of the corpus provides clear evidence

that the best regression class tree size for speakers varies, as shown in the histograms in

Figure 6.2. The two graphs show the distribution of oracle regression class tree sizes in

the early (left) and later (right) stages. Not surprisingly, the distribution weight for higher

sizes increases in the last stage because of higher-quality of the adaptation hypotheses. Also

evident from these histograms, and consistent with observations in the previous chapter,

is the fact that several speakers have the lowest WER when they are recognized using

unadapted models (0 classes).
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Figure 6.2: Distribution of oracle tree sizes.

To further understand the variability among speakers, they were clustered into groups

in which speakers have similar relative gains (or losses) from different regression class trees.

Each speaker was associated with a vector of relative WERs, normalizing the rate for each

possible regression class tree with that obtained by the default regression class tree. They

were then clustered using k-means with the number of clusters fixed at 5. Figure 6.3 shows

the mean vector of relative WER change for the speakers in a given cluster, from the case
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using unadapted acoustic models through every available regression class tree. For speakers

in clusters 1 and 4, the larger trees (9, 11) are best; for cluster 2, the mid-size trees (3, 6)

are best; for cluster 3, there is no advantage to any size; and for cluster 5, no adaptation is

the best strategy.

Cluster means: relative WERs
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Figure 6.3: Mean relative change in WER (compared to default) for speaker clusters over
different tree sizes.

6.4 Prediction of Tree Size

With evidence of potential performance gains from tuning the regression classes, the next

step was to automatically predict the regression class tree size for each speaker, based on

information observed in the adaptation data. The prediction problem could be formulated

in three possible ways: classification (tree size is one of the possible six cases), regression

(tree size is predicted as a real number), and classification based on cluster membership

as shown in Figure 6.3. A significant number of speakers had multiple local maxima (i.e.,



76

WER change could not be ordered by tree size); hence, the regression approach was not

suitable. An experiment was performed using perfect cluster classification, but it produced

a gain of only 0.2% in WER compared to around 1%, which can be achieved by using perfect

regression class tree size. Based on this evidence, it was decided to classify each speaker

into one of six possible regression class tree sizes shown in Figure 6.2.

Several speaker-level features computed from the adaptation data were investigated:

• acoustic scores per-cluster in RCTs,

• seconds of speech per-cluster,

• average word-based confidence scores of adaptation hypothesis (from system combi-

nation),

• normalized energy measure (per frame),

• vocal tract length normalization factor for MFCC and PLP front ends, and

• rate of speech (in phones per second).

For each of the per-cluster features, there were 11 scores, one for each node in the 11-leaf

tree. The seconds of speech per cluster feature was used since it is the standard back-off

criterion in the case of insufficient adaptation data. Word-level confidence features have

been found to be useful in improving performance of MLLR-based adaptation in [102].

This provided the motivation for using confidence scores in this work. However, the word-

level confidence scores were averaged over a speaker to compute a speaker-level confidence

measure.

After the raw features are extracted from adaptation data, they were processed as follows.

Each training sample represented a speaker and was labeled with the best regression class

tree size for that speaker. To compensate for the small number of training samples available,

only 464 speakers, the second best regression class tree size was added to the set of training

labels, if the WER was not significantly worse than the best regression class tree. Thus, each



77

training sample could have as many as two training labels. In addition, to counter the lack

of training data, bagging with replacement was used for selecting training samples. Since

the number of samples from each class was the same in the bagged training set, the final

classifier posteriors were renormalized with the priors seen in the examples in the training

set. Next, dimensionality reduction was performed on the training feature vectors using

PCA followed by LDA and used the resulting features to train standard statistical learners.

A 4-fold cross-validation training paradigm (1998+2000, 2001, 2002, 2003) was used,

designing classifiers on three sets and tuning parameters on the fourth validation set. For

each of the classifiers, the number of samples to use from each class for bagging and the

number of PCA components were decided by the accuracy on the validation set. The best

configuration to use was chosen by varying the bag size per class from 25 to 75 in steps of

25 and the number of PCA components from 10 to 35. The LDA transformation always

produced a 5-dimensional feature vector, since the number of possible classes was six. The

ensemble of classifiers from the cross-validation partitions were combined to form a stacked

learner. The posteriors from each of the classifiers in the stacked learner were then averaged

to obtain the final class posteriors.

Several statistical learning paradigms were explored including decision trees, support

vector machines, k-nearest neighbor and multinomial neural networks. Decision trees were

found to perform best, although the performance of the other methods was not significantly

different. The overall classification error rate obtained was in the range of 55%-64% for each

of the held out sets. The relative reduction in classification error rate compared to chance

error was in the range of 4%-20%.

Table 6.2 shows the percentage of times a particular class of features was used by the

decision trees in training classifiers when the allowed subsets of features were recognizer-

independent (seconds of speech, VTL, energy, and rate of speech measures), recognizer-

dependent (acoustic scores and confidence measures), or all features. Acoustic scores and

seconds of speech per cluster are used more frequently than other features. This observation

could also be explained by the fact that the number of dimensions representing these two

classes of features was much higher than the others, most of which were represented by one

dimension.
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Table 6.2: Features usage in the decision trees that were trained on different feature subsets.

% of questions

Features Rec. indep Rec. dep All

Acoustic Scores - 85.7 45.2
Seconds of speech 78.2 - 37.2
Confidence - 14.3 8.6
VTL 10.4 - 5.4
Energy 5.7 - 2.2
Rate of speech 5.7 - 1.4

6.5 Recognition Experiments

Various combinations were experimented with in predicting the regression class tree size

for individual speakers in the NIST RT 2004 test set using the decision tree described in

Section 6.4. In Table 6.3, column 2 is the case where a single prediction of regression class

tree sizes is used throughout the system (auto1); column 3 is the case where two different

sets of predicted regression class tree sizes are used: one each for the early and later stages

(auto2); and column 4 is the case where predicted regression class tree sizes are used only

in the later stages (auto3). The results of recognition experiments are shown in rows 10-

12 in Table 6.3 for different feature subsets, which correspond to columns 2-4 in Table

6.2. Compared to the baseline (18.6% WER), gains are seen for all cases where predicted

regression class tree sizes are used. However, compared to the case when oracle regression

class tree sizes are used (17.4% WER), there is substantial room for further improvement.

The strategy that uses different predicted regression class tree sizes for the early and later

stages (auto2) produces the best improvement in WER, an absolute 0.4% compared to the

baseline, using recognizer-dependent features, which is statistically significant at the level

p = 0.002 according to the matched pair sentence segment test. However, differences relative

to using a single tree prediction are not significant. Contrary to trends in the oracle case,

the average predicted regression class tree size was 7 for the early stage and 3 for the later

stage.
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Table 6.3: Results of using predicted regression class tree sizes with features from steps X
and Y (PX+Y)

auto1 auto2 auto3

step 5 P2+6 P2+6 9

step 7 P2+6 P2+6 9

step 5+7 P2+6 P2+6 9

step 9(1) P2+6 P5+7 P5+7

step 9(2) P2+6 P5+7 P5+7

step 9(3) P2+6 P5+7 P5+7

WER(%) for Eval2004

Default 18.6 18.6 18.6
Rec. indep 18.3 18.3 18.4
Rec. dep 18.3 18.2 18.5
All 18.3 18.3 18.4
Oracle 17.4 17.4 17.4

6.6 Discussion

This work shows that significant improvement in WER can be achieved by selecting the

correct size of regression class trees for individual speakers, including the possibility of no

adaptation. Initial efforts at developing an automatic procedure to predict the regression

class tree sizes have yielded modest improvements in WER. Analysis of the features used for

prediction shows that acoustic scores of adaptation data along with amount of adaptation

data available are the most useful features. A limitation of this work is that the RCTs

are not automatically derived, as in more recent versions of the system, and that a fixed

progression of tree cuts is specified for the different sizes. In the next chapter, we look at the

more flexible methods for determining tree size, using node-level pruning with automatically

derived trees.
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Chapter 7

NODE-LEVEL COMPLEXITY CONTROL IN RCT

7.1 Introduction

In Chapter 6, it is shown that the standard minimum data count approach is not an optimal

solution for online complexity control of RCTs, and better strategies can be designed by

using higher-level speaker-dependent features in addition to the amount of data in a node

to predict tree size - the effective number of regression classes to use for a target speaker.

The solution proposed in Chapter 6, determined RCT complexity for the tree as a whole by

using a predictor that chose from among a small set of possible tree configurations (e.g. 0-

11 leaves) based on speaker and adaptation hypothesis characteristics. The work presented

in this chapter, extends this idea to predict node-level pruning (or extension), allowing a

greater number of tree configurations with a very simple classifier. In addition, new features

are investigated for the predictor, in part motivated by problems that arise in adapting seg-

ments of broadcast news, where the hypothesized “speaker” is based on automatic clustering

of speech segments. Using these features with standard statistical classifiers, a prediction

is made for a new regression class to use, corresponding to pruning or growing a branch of

the RCT. In addition, a scheme is described that applies the proposed complexity control

scheme simultaneously to all regression classes that leads to improvements in robustness of

ASR system performance for English broadcast news on recent NIST evaluation test sets.

7.2 Task and System Description

The ASR system used in the this work was the English BN system of Sec. 4.2. It uses

unsupervised MLLR (“full” mean and diagonal variance transformation) once as shown in

4.3. The rest of the details of these systems have been described in Chapter 4.

The corpus used in this work is comprised of five NIST English BN development and

evaluation data sets released between 2003 and 2004: dev2003, dev2004-ldc, dev2004-tdt4,
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eval2003 and eval2004, which totaled approximately 12 hours of North American broadcast

news shows.

7.3 Classifier for Complexity Control

The goal of this work was to improve on the standard adaptation data threshold-based

approach for complexity control by using a standard statistical classifier and higher-level

features to predict the optimal regression class to use. We first start with the constrained

RCT described in Sec. 5.2.1 and an initial set of regression classes that are determined by

the standard data-threshold approach. Then we apply a classifier to each initial regression

class, using higher-level features specific to that class, to choose a neighboring regression

class that is (ideally) more appropriate for MLLR adaptation transformation estimation.

The tasks involved in designing the classifier were: deciding on the training labels, deciding

on the classifier objective function, and choosing the higher-level features to use, which we

describe in the next two sections.

7.3.1 Training Labels for Classifier

The most appropriate training label for the classifier would be the node label of the regres-

sion class that leads to the greatest improvement in ASR system performance after MLLR

adaptation. However, even after starting with an initial set of regression classes, the number

of possible new sets of regression classes that need to be explored is very large. To simplify

the number of possibilities to explore, each initial regression class is examined separately,

keeping others fixed, and considering only its neighboring regression classes in the branch of

a tree as alternatives. This scheme is illustrated in Fig. 7.1. Four possibilities are explored

for each initial regression class: move up, move down, stay at current position or no adap-

tation. Next, the MLLR adaptation transformations are estimated for each case and used

to adapt the SI Gaussian distributions in the initial regression class under consideration,

and also adapt the rest of the SI Gaussian distributions with the MLLR transformation es-

timated with their respective initial regression class. Then, recognition is performed using

the adapted acoustic model, and the WER is computed. The possibility that leads to the

best improvement in WER, is chosen as the training label for the classifier. Thus, there
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were four possible training labels: -1 (move down), 0 (stay unchanged), 1 (move up) or X

(no adaptation).

Figure 7.1: Determining training labels for classifier

In the process of generating the training labels for the classifier, it is observed that, for

many regression classes, there is more than one training label category that produced similar

ASR system performance levels. This ambiguity in training is represented by grouping

together instances of training cases which produce similar ASR system performance (at the

level of p = 0.3) to form a new training category.1 The approach taken to compute if two

different WER, obtained with two different regression classes, were significantly different

1While p = 0.3 seems high, many instances are still grouped because the small sample size in each case
means differences must be quite large to be highly significant.
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is the same as described in Sec. 5.7.4. For example, all regression classes for which move

up and stay unchanged produce the similar WER, are assigned to a single category. As

there were 4 initial training label categories, all 24 cases of the different training categories

producing equivalent WER are considered. Then three different training label assignment

schemes are designed:

• Smallest Tree: In this case, a new training label category is chosen, from the initial cat-

egories, that is biased towards predicting a smaller tree or lesser degree of adaptation.

For example, the group of regression classes for which move up and stay unchanged

produce equivalent WER, we choose to use move up as the new training label since it

leads to smoother MLLR transformations. (conservative approach)

• Largest Tree: In this case, a new training label category is chosen, from the initial cat-

egories that is biased towards a larger tree or higher degree of adaptation. (aggressive

approach)

• Regression: In this case we assign a new numerical target, equally-spaced between -1

to 1, to each of the 24 new possibilities and perform regression, instead of classification.

This case effectively involves predicting a larger number of possibilities.

The above the three schemes are shown in Table 7.1, where each row lists a one of the

possible 24 cases of the four possible training labels having equivalent WER2; columns 1

through 4 represent the four possible training labels; ; column 5 the percentage of training

samples for each row; and columns 6 through 8 ; represent the three different labeling

schemes.

7.3.2 Features

Several different features were considered that were dependent on a given regression class for

use with the classifier. The features were computed at the phone-level from the adaptation

2For example 0 1 1 0 represents the case that move up and stay unchanged have similar WER (at the level
of p = 0.3)
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Table 7.1: Training Label assignments and distribution of training samples pooled from five
English BN test sets

Training Labels

X 1 0 -1 % samples Regression Smallest Tree Largest Tree

1 0 0 0 9.7 -1.00 X X
1 1 0 0 3.9 -0.85 1 1
1 0 1 0 3.4 -0.71 0 0
1 1 1 0 8.3 -0.57 1 0
0 1 0 0 2.4 -0.43 1 1
1 1 0 1 0.7 -0.29 1 -1
0 1 1 0 4.8 -0.14 1 0
1 0 0 1 0.9 0.00 -1 -1
1 1 1 1 41.9 0.14 1 -1
1 0 1 1 2.3 0.29 0 -1
0 0 1 0 7.0 0.43 0 0
0 1 1 1 6.5 0.71 1 -1
0 0 1 1 3.7 0.85 0 -1
0 0 0 1 3.8 1.00 -1 -1

hypothesis and aggregated at the level of the regression classes. The broad categories of

these features explored are listed in Table 7.2, where column 1 lists the feature category and

column 2 provides the assumptions this work makes about how the degree of adaptation

(smoother or more detailed transformations) is correlated with increasing (or decreasing)

levels of each feature. For example, it can be argued, that as the signal-to-noise ratio

becomes higher, detailed transformations may not be effective and smoother ones may be

a better option. For rate-of-speech, likelihood of adaptation data, frequency of different

phones spoken and amount of adaptation data, it can be argued that increasing levels

of any of these features may create conditions where more detailed transformations are

more suitable. In addition, the clustering score from the unsupervised speaker clustering

algorithm that determines the pseudo speaker-labels was also considered as a feature, with

the idea that this might indicate clusters with multiple speakers, where less adaptation

might be better. Evidence is provided next, that shows the above reasoning holds for some

of the features. For each of these feature categories the mean, standard deviation and



85

entropy were computed from the phone-level statistics within each regression class.

Table 7.2: Feature categories used for predicting adaptation complexity.

Feature Categories
Assumed correlation with
degree of adaptation

Amount of adaptation data +

Rate of speech (ROS) +

Signal-to-noise ratio (SNR) −

Likelihood of adaptation data with SI
acoustic model

+

Frequency of different phones +

Clustering score of unsupervised
speaker clusters

−

The training labels were generated and the classifier features (zero-normalized) for all

the acoustic data in the five different test sets. Next, each regression class was assigned to

its training label category and histograms were generated for four different classifier feature

categories shown along the columns in Fig. 7.2: amount of adaptation data (column 1),

ROS (column 2) and entropy of phone frequency (column 3) for each regression class. Each

row in Fig. 7.2 corresponds to one training label category, and the plots are ordered in

descending order of “degree” of adaptation: move down (row 1), stay unchanged (row 2),

move up (row 3) and no adapt (row 4). The categories are referred to in terms of degree

of adaptation since moving up the tree involves using smoother MLLR transformations

(more sharing) and moving down the tree obtains more detailed transformations. It can be

seen in column 3, that classes with lower entropy of the frequency of the different phones
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spoken are better handled by using less adaptation. There is also a weak trend of classes

showing lower ROS tending to need a decreasing degree of adaptation. Normalized ROS

close to -1 correspond to slower speakers and correspondingly normalized ROS close to 1

indicate faster speakers. Column 1 in Fig. 7.2 shows that amount of adaptation data is

an indicator of degree of adaptation, since classes with a large amount of data benefit from

more detailed adaptation (row 1), but the trend is weak. The empirical evidence in these

examples supports the hypothesis that other features, besides amount of adaptation data,

may be useful for predicting complexity control of regression class trees.

7.3.3 Classifier Performance

The classification tasks used standard support vector machine (SVM)-based classifiers and

the regression used support vector regression (SVR) [95], provided by the implementation

in [13]. Three of the five test sets were used for evaluation purposes: dev2004, eval2003 and

eval2004. For each test set, we used the other four test sets as the training set. The support

vector machines used a radial basis function kernel and its parameters were determined by

five-fold cross validation for each training set. The classification error rates of the SVM

classifiers and the corresponding chance3error rate , for the smallest tree and largest tree

classifier designs, and the root mean square error (RMSE) of the SVR and its corresponding

RMSE for predicting the mean target, are shown in columns 2 and 3 in Tables 7.3, 7.4 and

7.5 respectively. Since the relative WER change for each possible training label for every

regression class was available, the estimated relative change in WER was computed for the

predicted case, the chance (for classification) or mean (for regression) case, and the oracle

(best WER improvement) case. The estimate for a test set and particular condition is found

by weighting the relative error associated with a class by the number of words in the class

and averaging over all classes. These figures are shown in columns 3, 4 & 5 in Tables 7.3,

7.4 and 7.5. The performance of the SVM classifier is better than predicting chance in all

cases as is the estimated relative WER change, and the labels based on the smallest tree

(conservative tree size) lead to the biggest gains in estimated WER. The WER improvement

3We use the term “chance” to refer to predicting the most frequent class.
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Figure 7.2: Four feature classes with rows in descending order of “degree” of adaptation:
move down (row 1), stay unchanged (row 2), move up (row 3) and no adapt (row 4).

in the oracle case is higher in most cases, compared to the classifier, though still not large.

In the case of using the SVR, the estimated WER gains are somewhat larger, but its RMSE

is higher than just predicting the mean target in the training data.
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Table 7.3: Classifier performance (smallest tree)

Test set
Classifier
Performance

Relative WER change
compared to baseline
(Estimated)

SVM Chance SVM Chance Oracle

dev2004 0.50 0.59 0.9 0.0 4.6
eval2003 0.40 0.47 0.4 0.0 2.6
eval2004 0.43 0.53 0.5 0.0 2.0

Table 7.4: Classifier performance (largest tree)

Test set
Classifier
Performance

Relative WER change
compared to baseline
(Estimated)

SVM Chance SVM Chance Oracle

dev2004 0.17 0.29 0.1 0.0 1.1
eval2003 0.21 0.25 0.3 0.1 2.3
eval2004 0.31 0.34 -1.0 -1.1 2.0

Table 7.5: SVR performance (regression)

Test set RMSE

Relative WER change
compared to baseline
(Estimated)

SVR Mean SVR Mean Oracle

dev2004 0.90 0.53 2.5 1.5 4.6
eval2003 0.92 0.50 0.4 0.1 2.6
eval2004 0.72 0.54 0.0 -1.0 2.0

7.4 Online Complexity Control

The evidence presented above suggests the potential for improved ASR system performance

by applying the proposed complexity control prediction scheme. To use it in an actual

recognition experiment, a procedure was designed, where the classifier (or predictor) is

applied simultaneously to all the initial data-threshold regression classes. While applying
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this procedure, it was noticed that for the cases when the classifier predicts “move down

(-1)”, sometimes we get “poor” MLLR transformation estimates from the lower nodes in the

tree. To overcome this issue, we decided to smooth the mean MLLR transformations only, of

the lower nodes with those from the initial regression class. The weights for smoothing were

estimated by maximizing the likelihood of the adaptation data using an approach similar

to that described in Sec. 5.6.1 and proposed by Gales in [37].

To apply the online complexity control scheme described in the previous section, an

initial set of regression classes is first determined (based on applying a threshold to the

adaptation data), and apply the complexity control classifier of Sec. 7.3 to obtain predic-

tions of regression classes to use. Next, the mean and diagonal covariance MLLR transfor-

mations are estimated for the predicted classes and the initial regression classes and stored

in memory. If there are any regression classes predicted from the lower nodes in the tree

(closer to the leaves), the MLLR transformations of the predicted classes are applied to the

SI acoustic model and the HMM state occupation statistics are re-estimated. Using the

new statistics, smoothing weights are estimated for the mean MLLR transformations in the

lower node and its corresponding mean transformation from the initial regression class, to

produce the final set of MLLR transformations.

7.5 Recognition Experiments

This overall complexity control scheme is applied to the English BN ASR system of Fig.

4.3, and tested on the three test sets of Table 7.6 for the two classifier design schemes

described earlier. The column titled “Baseline” refers to the adaptation strategy with the

standard adaptation data-threshold-based complexity control. The classifier for the largest

tree scheme produces small (but insignificant) improvements for two test sets, while the

classifier for the smallest tree scheme and the SVR used for the regression framework is not

able improve over the baseline, in contrast to the estimated WER analysis that suggested

the smaller tree would be better. A reason for this may be that the estimate of one node at

a time effectively assumes a larger tree, since pruning is only applied to one node. In order

to relate this approach to the previous work on predicting whole RCT sizes (Chapter 6, a

majority voting procedure was applied to the predictions of the classifier in the largest tree
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case and the most frequent prediction was applied to all the nodes in the RCT. The case

of predicting whole RCT sizes is equivalent to pruning back or growing further all initial

regression classes. This results of the voting procedure in shown in column 6 in Table 7.6,

which is able to improve over the baseline cases for two test sets.

Table 7.6: WER (%) for various predicted complexity control strategies applied simultane-
ously to all regression classes

Test set Baseline Smallest Tree Largest Tree Regression Vote

dev2004 19.1 19.1 19.0 19.1 19.0

eval2003 10.9 10.9 10.8 10.9 10.9
eval2004 15.9 15.9 15.9 15.9 15.8

To further understand the impact of the proposed complexity control approach, in par-

ticular on the robustness of ASR system performance, the per-speaker level WER were

examined. The “net (%)” of speakers who benefit using the proposed approach, compared

to the baseline adaptation case, are shown in Table 7.7 for the two classifier design schemes

and the voting scheme. The trends in the table clearly show that a higher percentage of

speakers benefit from using the proposed complexity control scheme, which implies an im-

proved robustness of ASR performance. Again, in contrast to the estimated WER gains in

the previous section, the best results here are obtained with the more aggressive (largest)

tree size prediction strategy both for the largest tree classifier and the voting scheme applied

to the predictions of this classifier. A possible explanation for this can be the fact that the

largest tree scheme makes greater use of the transformation smoothing weights resulting in

stable performance. The positive results for the voting scheme suggest that voting may

be somewhat more robust than making independent decisions at the leaf nodes. The same

analysis in the case of the regression scheme, using SVR, did not show similar trends.

7.6 Another View of Complexity Control

Since online complexity control of MLLR-based adaptation determines the degree of adap-

tation, it is analogous to determining the amount of “shift” of the SI acoustic model needed
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Table 7.7: Net (%) of speakers who benefit from classifier-based complexity control com-
pared to standard case.

Test set Smallest Tree (%) Largest Tree (%) Voting (%)

dev2004 7 5 12
eval2003 13 30 37
eval2004 14 12 22

to move it “closer” to the true SD acoustic model. It can be argued that target speakers

whose true SD acoustic model is “close” to the SI acoustic model would require a lesser

degree of adaptation compared to speakers whose true SD acoustic models are very differ-

ent from the SI acoustic model. In related work in [60], it was reported that for supervised

adaptation of statistical classifiers, when the distributions of training and target data were

similar (low KL distance between distributions), fewer adaptation data samples were needed

to achieve the same confidence in classifier error as that in the case of dissimilar distributions

(higher KL distance) and greater number of adaptation samples. The problem of deciding

the online complexity control or the degree of adaptation in MLLR can also be addressed by

investigating measures of dissimilarity between training and target speaker distributions.

In this dissertation, preliminary investigations were conducted to study the dissimilarity

of distributions of rate of speech measures in training and target speaker populations and

examine the relationship of such dissimilarities and the four “degrees” of adaptation of the

rows in Fig 7.2. In Fig. 7.3, histograms of zero-normalized rate of speech (measured in

phones per second) at the level of nodes in the RCT are shown for both training and target

speaker populations for English BN for different “degrees” of adaptation. Training speaker

population refers to the speakers used for training the SI acoustic model and comprised 900

hours of English BN acoustic data. The target speaker population is the NIST 2004 English

BN test set comprising 6 hours of acoustic data. In addition, the rate of speech measures for

the training and target speaker populations are normalized using the same normalization

factors used in column 2 of Fig. 7.2 in order for them to be comparable. KL distance

measures were computed between each pair of histograms in each column of Fig. 7.3 with
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normalized and smoothed histograms to compare them for similarity. The mismatch in

the distributions is greatest in column 1 (KL distance of 0.64), which corresponds to the

case of higher degree of adaptation (larger trees and faster speech). The mismatch between

distributions is least for column 4 (KL distance 0.31), which correspond to lesser degree of

adaptation (smaller trees and slower speech). However, the KL distance measures for the

distributions of columns 2 and 3 are 0.42 and 0.60 respectively. The KL distance measures

do not increase from left to right, as one would expect if less mismatch implies that fewer

samples are required in adaptation (allowing for bigger trees). However, it may be that ROS

is not the right space to examine mismatch and/or complications from using unsupervised

(vs. supervised adaptation).

Also noticeable in Fig. 7.3, is the overall trend that phones in the training speaker

population have higher rate of speech measures compared to the target speaker population.

A likely reason for this phenomenon is that the rate of speech measures for the training

speaker population is computed from forced alignments that are generated from supervised

transcriptions and may be constrained to include extra phones. The rate of speech measures

for target speakers are based on recognition hypothesis which do not have such constraints

and may effectively have a lower rate of speech as measured in phones per second.

Next, in Fig. 7.4 the distribution of the relative ASR performance improvements of

MLLR adaptation using the SI RCT, compared to using the SI acoustic (unadapted) model,

is shown for speakers in the English BN 2004 test set. The horizontal axis in Fig. 7.4,

represents speakers who are ordered by decreasing rate of speech (measured in phones/sec)

from left to right. The remaining presentation details of Fig. 7.4 is similar to that of Fig.

5.7. Complexity control for MLLR adaptation for the experiment shown in Fig. 7.4 is

performed using the standard approach of using only amount of adaptation data. It can

be seen that speakers with performance loss due to MLLR adaptation extends across the

entire range of rate of speech (and by extension the entire range of amount of adaptation

data) and not just regions of mismatch in distributions, particularly the fast speaking rates

as shown in Fig. 7.3.

The conclusions of [60] with regard to the amount of adaptation data required should be

qualified by the fact that it is derived from experimental evidence in the case of supervised
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adaptation, while the work in this dissertation is only on unsupervised adaptation where

adaptation hypotheses are errorful. In this scenario, it may be useful to consider confidence

of word hypotheses in assessing train/test differences. In addition, it may be necessary to

consider distribution dissimilarities in terms of multiple factors jointly.

ROS.TRAIN

Z−normalized feature

Fr
eq

ue
nc

y

−2 0 2 4

0
20

40

ROS.TEST

Z−normalized feature

Fr
eq

ue
nc

y

−2 0 2 4

0
20

40
60

−2 0 2 4

0
50

10
0

20
0

−2 0 2 4

0
50

10
0

20
0

−2 0 2 4

0
10

20
30

40

−2 0 2 4

0
10

30

−2 0 2 4

0
40

80
12

0

−2 0 2 4

0
40

80
12

0

Figure 7.3: Histograms of rate of speech measures at the regression tree node level for
training and test speaker populations for four “degrees of adaptation”: move down (col 1),
stay unchanged (col 2), move up (col 3) and no adapt (col 4).

7.7 Discussion

In summary, a new approach for online complexity control of RCTs is proposed for MLLR

adaptation that attempts to improve upon the standard approach to this problem. Two

classifiers were designed to predict the optimal regression class to use based on several

higher-level information sources that are derived from the initial regression class, obtained

by the standard approach. It is shown that rate-of-speech and phone distribution entropy
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Figure 7.4: Relative change in WER for all speakers in the NIST 2004 English BN test set,
ordered by decreasing rate of speech from left to right.

features can potentially be useful in predicting complexity of MLLR adaptation, in addition

to the amount of adaptation data. These classifiers performed better than chance, though

by modest margins and produced improvements in an estimate of change in WER due to

MLLR adaptation. In addition, we also proposed a procedure for applying the complexity

control scheme simultaneously to all initial estimates of regression classes that led to only

modest improvements in ASR system performance. However, the robustness of ASR system

performance is clearly improved, as shown by the large net percentage of speakers who

benefit from using our complexity control approach, compared to the baseline adaptation

case.

The overall gains observed here are not as large as those reported in Chapter 6 with

a more constrained tree structure prediction, but the tasks were different (conversational

speech vs. broadcast news) and the use of speaker clustering to define adaptation segments

makes the broadcast news domain somewhat more challenging for robust adaptation. The

voting scheme is most similar in that it uses a constrained set of subtrees, but these are
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relative to the data-driven cut through the original tree rather than the hand-determined

set in Chapter 6.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

This chapter presents a summary of the main contributions of this dissertation and

proposed future directions of research related to this work.

8.1 Main Findings and Contributions

The pilot study presented in Chapter 3, provides evidence that MLLR adaptation leads to

worse ASR system performance for 15% of speakers (Fig. 3.1) in the case of English CTS

and about 30% of speakers in the case of English BN. This is an important problem that

concerns the robustness of performance improvements obtained using MLLR adaptation.

The research presented in this dissertation have proposed new solutions to improve the

robustness of MLLR adaptation by exploring two aspects of MLLR transformation sharing

using regression class trees: the design of regression class trees and the online complexity

control of adaptation.

Based on evidence in previous work [14, 34, 53], that incorporating speaker variability

information during adaptation leads to improved ASR system performance, the approach in

Chapter 5 was to move beyond the use of a single SI RCT, training multiple RCTs, each of

which represented distinct types of speaker variability within a large training speaker popu-

lation. A new speaker clustering algorithm was introduced that modeled speaker variability

by partitioning a large corpus of speakers in the eigenspace of their MLLR transformations,

and captured speaker variability information in the diversity of the structures of RCTs

trained for each speaker cluster. By using the optimal cluster-specific RCT for each in-

dividual target speaker, it was possible to achieve significant overall improvement in ASR

system performance, compared to the case where a single SI RCT is used. Visual exam-

ination of the cluster-specific RCT structures revealed that in the case of the constrained

RCT, the vowel branches exhibited more diversity than the consonant branches, which
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was consistent with findings of independent studies on dialect markers in North American

English.

To incorporate the multiple, cluster-specific RCTs in MLLR adaptation and subsequent

recognition experiments, a procedure was developed that linearly combined MLLR mean

transformations for a given speaker. The linear combination of the transformations was

done using weights, one for each cluster-specific RCT, that were estimated using an ML-

based approach on the adaptation data in the framework of a two-step ML procedure that

estimated the weights with and without inequality constraints. The two-step ML procedure

produced small, but insignificant overall improvements, compared to using only one SI RCT,

for both English BN and CTS tasks, and larger improvements (1.9-2.9% relative, which is

significant) for Mandarin BN and BC test sets. More importantly, it was observed that the

use of speaker-clustered RCT led to ASR performance gains that were robust to a wide range

of amounts of adaptation data and WERs on the adaptation hypothesis. Approximately

5% more speakers, in the case of English CTS, and 7% more speakers, in the case of English

BN, benefited significantly from using the speaker-clustered RCT, compared to the baseline

case of a single SI RCT. As the amount of adaptation data decreases, regression classes

are chosen higher up in the RCT (based on a given data count threshold), but the tying

across phone classes differs depending on the RCT structure. This results in diverse MLLR

transformations being linearly combined, and explains the robustness of WER gains from

adaptation across a range of conditions. It is also observed that the speaker-clustered RCTs

benefited a majority of the speakers who were hurt by MLLR adaptation with a single SI

RCT, and reduced the average performance loss for those speakers who were hurt by MLLR.

In Chapter 6, evidence (Fig. 6.2) was presented that using the standard approach

for complexity control for target speaker does not yield the optimal number of regression

classes to use. Based on this evidence, the work in Chapter 6 and 7 was focused on exploring

solutions that involved using higher-level information sources, aggregated at different levels

of granularity (speaker or RCT node) and including the standard amount of adaptation

data, to predict better complexity levels for MLLR adaptation. Chapter 6 proposed an

approach to predict adaptation complexity, for target speakers, from a pre-determined set of

fixed number of regression class sharing schemes, including performing no adaptation, using
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standard statistical classifiers and speaker-level features. This solution resulted in modest

(2.1% relative), but significant, improvement in ASR system performance for English CTS.

Among the speaker-level features, likelihood of different phone classes in the adaptation

hypotheses, with the unadapted SI acoustic model, and the standard criterion of amount of

adaptation data were found to be most useful. A limitation of this work was that the final

number of regression classes to use was predicted as a “whole”, which reduces the flexibility

in the possible of different RCT structures that can be predicted for a target speaker.

In Chapter 7, we overcame this limitation by proposing a new, more flexible strategy

that can predict complexity of adaptation by performing node-level pruning and showed

there are other higher-level features that can be useful for this purpose. The node-level

pruning was performed by a support vector machine-based classifier, which predicted the

best regression class to use from among the neighboring classes in the tree to the initial

minimum adaptation data count regression classes in an SI RCT, by exploring a somewhat

larger number of cuts through an SI RCT. A new set of features was designed at the

node-level for use with the classifier, among which rate of speech and entropy of amount

of adaptation data per-phone in a node were found to be useful (along with the amount

of adaptation data) and produced modest gains in the classifier accuracy over predicting

the most frequent case. A procedure was proposed that allowed the incorporation of the

node-level classifier into the framework of MLLR adaptation such that it could be used in

recognition experiments. This procedure used weights, similar to those in Chapter 5, to

smooth the MLLR mean transformations from lower nodes in an RCT with those of the

initial regression classes. While this approach achieves only insignificant improvements in

overall ASR system performance, it is able to improve robustness of ASR performance as

evidenced by the higher “net” percentage of speakers (7-30%) who benefit from it, compared

to using the standard approach to complexity control.

Overall the research directions presented in this dissertation are general purpose in

the context of MLLR adaptation, and as such can impact any application that uses it

besides ASR, such as optical character recognition and speaker recognition. The future

directions of this research, presented in the next section can be equivalently extended for

such applications.
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8.2 Future Directions

There are several future directions that can be pursued based on the research presented

in this dissertation. This section discusses these by focusing on both algorithm-specific

variations and impact over a broader scope.

The effectiveness of the linear combination of cluster-specific MLLR mean transforma-

tions for a target speaker, as described in Chapter 5, depends on the combined transfor-

mation being different from each component transformation, which in turn depends on the

structure of cluster-specific RCTs being very different. Variations of the speaker clustering

algorithm of Chapter 5 can be pursued with the aim of training cluster-specific RCTs that

show variation in structure. It is possible to obtain a new set of MLLR transformations us-

ing the speaker clustering obtained by assigning training speakers to the cluster whose RCT

produced the lower WER after MLLR adaptation, and then performing the k-means based

clustering in the eigenspace of these new transformations. To further validate the oracle-

cluster dependent ASR performance improvements (shown in Table 5.1 and 5.2) obtained

from the speaker clustering algorithm, the training speakers can be randomly clustered and

repeating the oracle cluster error analysis. We can relax the constraint that the speakers

used for clustering not be included in acoustic model training can be relaxed to utilize a

larger population for speaker clustering, which may lead to more diverse RCTs.

The two-step ML weight estimation procedure in Chapter 5, involving the estimation

of weights with inequality constraints, is a simple one that may not always be successful

in finding weights that satisfy all the constraints. Perhaps a solution is to explore more

advanced methods in constrained optimization.

It was mentioned that the cluster-specific RCTs learned in Chapter 5, are conjectured

to be representative of dialectal (or sociolectal) information in large speaker populations.

An immediate extension of this work is to perform more detailed analysis, in collaboration

with linguists, to determine the validity of this hypothesis. A related direction of this of

this work is to design an automatic system for dialect clustering which will benefit ASR

systems for languages such as Arabic. It may also be of interest to investigate whether this

approach can be used for detecting changes in register, for example between news reporting
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and talk show conversations, which may help ASR systems to regulate adaptation strategies

for each domain. The eventual goal of this direction of research is to automatically learn new

subspaces that are representative of speaker variability as it relates to adaptation, whether it

is a function of dialects or other types of variability that can lead to more effective modeling

in the final adaptation strategy.

The main direction of future research for the new strategies for complexity control pre-

sented in Chapter 6 and 7 is to search for features that have greater predictive power for this

task. Pronunciation probabilities for words spoken by individual speakers and reliable con-

fidence estimates for the words in the adaptation hypotheses can be explored. The current

set of features explored show evidence that they add more information, in predicting com-

plexity of adaptation, compared to the case of amount of adaptation data alone. However,

they are somewhat weak in their predictive power as seen from the accuracy levels of the

classifiers. While these features are easy to interpret, since they are derived using knowl-

edge of the properties of the speech signal, they are also somewhat noisy. A better approach

might be to use the posterior of statistical models of these information sources (e.g., rate

of speech) as features. Another promising direction to pursue is to investigate features that

model the differences in distributions of higher-level information sources between training

and target speaker populations, as motivated by the discussion in Sec. 7.6. In yet another

interesting research direction, the problem of online complexity control can be solved as an

extension of the eigenspace MLLR work reported in [14]. In this approach, the final MLLR

transformation to use would be a weighted combination of eigen MLLR transformations as

in [14], but using a different predicted number of eigen MLLR transformations (of Chapter

5) to use for each target speaker. The eventual extension of this work is to develop a set of

adaptation correlates, which can be used a basis for two other tasks: “difficulty” of adapta-

tion for individual speakers, potential gains (or losses) from adaptation. Both of these tasks

are important in being able to design adaptation strategies that provide robustness across

a wide range of conditions, in addition to improving system performance.

A final extension of the work presented in the dissertation is to incorporate the com-

plexity control strategy of Chapter 7 into the design of adaptation strategies using multiple,

speaker-clustered RCTs of Chapter 5. Since both approaches are successful in impacting
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the robustness of MLLR adaptation, such a combined approach may lead to more stable

ASR system performance.
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