The Web as a Parallel Corpus
- Philip Resnik and Noah Smith, CL’03

Presented by Kevin Duh
March 3, 2005
UW Machine Translation Reading Group

Parallel Corpora is Critical Resource
- Parallel corpora is essential for multilingual applications:
 - MT translation model
 - Multilingual NLP
 - Cross-lingual Information Retrieval …
- Parallel corpora can help monolingual applications:
 - Lexical acquisition
 - POS tagging (by projection)
 - Data sharing …
- Currently, our research is driven by our data:
 - E.g. Hansards, UN Proceedings.
 - Can we obtain the data we desire to achieve our research objectives? (e.g. different styles and topics, different language pairs)

Mission statement:
Extract Bitexts from the Web
The Web IS a parallel corpus
⇒ How can we mine it and extract useful bitexts?

Approaches:
1) STRAND: detect bitext based on similar structure
2) Content-based matching: use translation lexicon
3) Combination method

STRAND system
- Insight:
 Webpage authors often use same markup structure when presenting same content in different languages.
- 3 step process:
 1. Locate pages that might have parallel translations
 2. Generate candidate pairs
 3. Structural filtering to remove non-bitext

STRAND: Step 1
- Task: Locate pages that might have bitext
 - Use AltaVista to find parent and sibling pages
 - Parent: page with both “English” and “French” anchors
 - Sibling: “French” page that has “English” anchor

STRAND: Step 2
- Task: Generated candidate pairs
 - Method 1:
 - Link up sibling pages
 - Link up children pages of parents
 - Method 2:
 - Use crawler to consider entire websites
 - Then use URL matching:
 - Filter by document length: length(E) $\niota k * length(F)$
STRAND Step 3: Structural Filtering

- Step 1 & 2 generates many non-bitexts. Step 3 filters these by exploiting HTML structural commonalities between true bitexts.

Structural Filtering:

- Markup analyzer creates linear sequence of tokens
- Types of tokens:
 - Start/end token for each HTML element
 - Chunk token contains # of non-whitespace bytes in text segment

** markupAnalyzer**

- Embedded structure not used:
 - Tree alignment is computationally expensive
 - Many embedded markups are for text formatting, not structure

Structural Filtering: DP alignment

- Dynamic programming aligns token sequences

START:TITLE	Chunk:13	END:TITLE
START:BODY	Chunk:11	END:H1
START:H1	Chunk:13	END:TITLE
Chunk:122		

- Compute 4 scalars to quantify alignment quality
 - Percentage of non-aligned tokens
 - Number of aligned CHUNKs of unequal length
 - Correlation of lengths in CHUNKs
 - Significance level of correlation

=> Build classifier based on these features to filter bitext

STRAND Evaluation

- Precision/Recall, but true Recall is impossible
- Defines recall relative to the set of candidate pairs generated by STRAND Step 1 and 2.
- "Truth" is based on human judgment
- Bilingual speakers are asked: "Was this pair intended to provide same content in two different languages?"
- In practice:
 - Select subset of Step 2 output for human judgment; base recall on agreed human judgments
 - 16763 step 2 outputs -> 326 for human judgment -> 261 pairs agreed (86 good/175 bad)

STRAND Results 1

- Precision/Recall results:
 - Set thresholds of DP alignment values based on held-out set. E.g:
 - If dp < 20% and p < 0.05, then pick candidate bitext
 - English-French: precision-100%, recall-68.6%
 - English-Chinese: precision-98%, recall-61%
 - Question: Is precision more important? Why is recall so low?

CLIR: extract translation lexicon from STRAND

- Backing off from bilingual dictionary to STRAND lexicon accounts for 9% token match
- 12% relative improvement in precision over bilingual dictionary alone

STRAND Results 2

- Fluency and Adequacy Evaluation by bilingual speakers
 - Random sample of:
 - 30 human-translated bitext from FBIS
 - 30 Chinese sentence from FBIS, paired with Babelfish translation
 - 30 STRAND bitexts
 - Speakers rate pairs by translation adequacy and Chinese/English fluency
STRAND parameter tuning by machine learning

- Task: Binary classification
- Features: 4 structural values \((dp, n, r, p)\)
- Decision tree with \(N\)-fold cross-validation using subset of data labeled by human judges

If \(dp > 37\) then BAD;
Else if \(n > 11\) then GOOD;

Result: Precision-95.%, Recall-84.1%
Note: this process is language-independent and only requires some annotation

Content-based Matching

- Motivation
 - “Same structure” assumption doesn’t capture all bitexts
 - Many web documents don’t have much HTML markup
 - Techniques for translation detection exists
- Basic idea: Quantify Translational Similarity \((tsim)\)
 - Computed from symmetric word-to-word model
 - Given link probability \(p(f,e)\). Find set of links that maximize total probability

Translation Similarity \((tsim)\)

- Similarity score should be high when many link tokens in best matching \(M\) does not contain NULL.

\[
tsim_{\text{MWBM}} = \frac{\log \text{Pr(two-word links in } M)}{\log \text{Pr(all links in } M)}
\]

\[
tsim_{\text{MCBM}} = \frac{\# \text{ of two-word links in } M}{\# \text{ of all links in } M}
\]

Building the translation lexicon

- Several sources:
 - English-French dictionary
 - Lexicon is trained from it using EM (but most entries already have word-to-word mapping)
 - Cognate pairs
 - Learn language-specific character weights for computed weighted edit distance. Pairs are “cognates” if weight is high
 - Character weights trained from translation model built from the Bible. Resulting cognates are noisy (see Table 2).
 - Combine dictionary and cognates to make Dirichlet prior
 - In EM, prior will increase expected counts for more probable word pairs
 - Train on versed-aligned Bible using MWBM
 - Final lexicon consists of all word pairs with nonzero probability

Tsim results

- Results from using Tsim only
 - Threshold: \(tsim = 0.44\)
 - Compute \(tsim_{\text{MCBM}}\) on first 500 words of documents
 - Precision-83.3%, Recall-92.1%

- Combining Tsim feature with STRAND values
 - Precision-97.4%, Recall-98.0%
 - Combining structural and content features is beneficial
Putting it all together: Building an English-Arabic Corpus

1. Search Internet Archive for country domains like .eg, .sa and .com domains originating from Arabic-speaking countries (e.g. emiratesbank.com) => 19M pages

2. Language-specific substring subtraction creates 786K types of URL (avg. 25 pages per URL)

3. 8K Arabic-English candidate pairs extracted

4. Apply structural + content-based matching
 • English is lemmatized; Arabic is converted to root form (48k types)

5. Use 149 human labeled pairs to train decision tree classifier. Apply this on entire 8K candidate set

6. Final result: 1821 bitexts
 • English: 1M tokens / Arabic: 1.3M tokens

Future Work

• Improving tsim
 • Can weights in dictionary be more robustly estimated?
 • Filter noisy translation lexicon (e.g. noisy cognates)
 • Rather than computing tsim from first 500 words, can sample content words, only words present in dictionary ...

• Bootstrapping
 • Iterative mine and enlarge training data for building lexicon and classifiers

Conclusions

• http://umiacs.umd.edu/~resnik/strand/
 • Distribute URLs rather than actual text => avoid legal issues
 • Internet Archive URLs are persistent
 • Currently available data:
 • English-French, English-Chinese, English-Basque, English-Arabic