Improving a Statistical MT System with Automatically Learned Rewrite Patterns

Fei Xia and Michael McCord (Coling 2004)

UW Machine Translation Reading Group
Presented by Kevin Duh
Nov 3, 2004

Motivation

- Limitation of current phrase-based SMT
 - No mechanism for expressing and using linguistic phrases in reordering
 - Ordering of target words do not respect linguistic phrase boundaries
- Xia and McCord’s solution:
 - Extract linguistic rewrite rules from corpora
 - Preprocess source sentences so phrase ordering is similar to that of target language
 - Perform SMT decoding with monotonic ordering constraint

Phrase-based SMT

- Current state-of-the-art SMT are phrase-based
- Use Viterbi alignment on words to extract “phrase-pairs”
 - Eg: Do word alignment in both directions, then take intersection.
- Advantage over word-based SMT
 - Memorize translation of group of words
 - Alleviate problems of translation selection, function word insertion, ordering of target words with a “phrase”.

But..

- “Phrase” in Phrase-based MT is not a real linguistic phrase
- Let’s call it “Clump” based MT instead from now on.
- Disadvantage of clumps:
 - No mechanism for expressing and using generalization that accounts for linguistic phrase reordering
 - Reordering of clumps does not respect linguistic phrase boundaries

Syntax-based MT

- E.g. (McCord & Berth 1998)
- Express generalizations explicitly:
 - E.g. “Adj N” → “N Adj”
- Rewrite rule is performed with respect to parse tree, so reordering respects linguistic phrases

But...
- Requires parsers, translation lexicon, rewrite patterns

Combined MT systems

- Och et al, 2004
 - Post-processing approach:
 - Use variety of features (from no syntax to deep syntax) to rerank N-best list from a clump-based SMT
 - But observed little improvement from syntax-based features
- Xia and McCord (this paper)
 - Pre-processing approach:
 - Use automatically learned rewrite rules to reorder source sentence into target sentence ordering, then apply clump-based SMT.
Baseline Clump SMT

- Phrase-based unigram model [Tillman & Xia (HLT 2003)]
- Maximizes probability of block sequence $b_{1:n}$

$$\Pr(b_{1:n}) = \prod_{i=1}^{n} \Pr(b_i \mid b_{i-1})$$

- $\Pr(b_i) = \text{block unigram model (joint model)}$
- $\Pr(b_i \mid b_{i-1})$ uses trigram language model (prob of first word in target b_i conditioned on final two words in b_{i-1})

Simple set of model parameters; no distortion prob.

Baseline Clump SMT: Training

- Step 1: Word alignment
 France is the first western country
 la france est le premier pays occidental

- Step 2: Extract clump pairs
 France => france, France => la france
 is => est, is => first => premier
 first => est le premier
 western country => premier pays occidental
 western country => pays occidental

Baseline Clump SMT: Decoding

- Translate: "He is the first international student"
- Relevant parts of clump dictionary
 is => est, first => premier, is the first => est le premier
 he => il, student => e'tudiant, international => international

- One possible segmentation:
 [He] [is the] [first] [international] [student]
- Possible translations:
 il | est le premier | international | e'tudiant
 est le premier | il | international | e'tudiant
 il | international | est le premier | e'tudiant
 il | est le premier | e'tudiant | international

System Overview

- At Training Time:
 - (T1) Learn rewrite patterns:
 - 1. Parse sentences, 2. Align phrases, 3. Extract patterns
 - (T2) Reorder source sentence using rewrite patterns
 - (T3) Train clump-based MT to get clump dictionary
- At Decoding Time:
 - (D1) Reorder test sentences with rewrite patterns
 - (D2) Translate reordered sentence in monotonic order

We’ll focus on (T1) and (T2) hereafter.
Note: need parser source sentences. Parser for target sentences is optional.

Definition of rewrite patterns

- Rewrite pattern is a quintuple:
 - (SourceRule, TargetRule, SourceHeadPosition, TargetHeadPosition, ChildAlignment)
 - Rule: $l(X_1 \rightarrow X_2 \cdots X_m)$
 - $l(X)$ is label of node X in parse tree
 - X must include head child of X
 - ChildAlignment:
 - injective correspondence between source (X_i) and target (Y_j)
 - Simplification:
 - $(NP \rightarrow \text{Adj} N) \Rightarrow (NP \rightarrow \text{N Adj})$ becomes Adj N => N Adj
 - Lexicalized rule:
 - Adj(good) N => Adj(bon) N
Parsing sentences with Slot Grammar

Aligning Phrases
1. Align source and target words using word aligner
2. For each source phrase S and target phrase T, calculate:
 \[
 \text{Score}(S, T) = \frac{\# \text{Links}(S, T)}{\text{Span}(S) + \text{Span}(T)}
 \]
 - \#Links(S, T) = total number of words linked between S and T
 - Span(X) = number of words in phrase X
3. Align S to T with the highest \text{Score}(S, T)

Aligning Phrases
1. Each node has head word, arcs to surface words, and features

Extracting Rewrite Patterns
Given a parse tree pair and a phrase alignment, extract all rewrite patterns \((X_1 \ldots X_m) \Rightarrow (Y_1 \ldots Y_n)\) that satisfies:
1. \(X_i\) are siblings and relative ordering in \((X_1 \ldots X_m)\) is the same as ordering in tree
 ⇒ force phrases to respect linguistic boundaries defined by the tree
2. Parent node \(X\) aligns to parent node \(Y\)
 ⇒ or else \((X_1 \ldots X_m) \Rightarrow (Y_1 \ldots Y_n)\) aren’t even phrase pairs
3. \((X)\) and \((Y)\) both contain head child, and head children must be aligned
 ⇒ rules out un-linguistic phrases
4. Any aligned child pair is either both lexicalized or both unlexicalized
 ⇒ allows for both specific and general rules

Organizing Rewrite Patterns
1. The pattern extraction step produces:
 - Conflicting rules: \((\text{Adj N} \Rightarrow \text{Adj N})\) vs \((\text{Adj N} \Rightarrow \text{N Adj})\)
 - Many, many patterns (due to lexicalized patterns)
 - Patterns need to be organized and filtered before they can be useful
2. Main ideas for organization:
 - Organize patterns by source rule
 - Because they are ultimately applied to source trees
 - Order patterns by “specificity”.
 - E.g.: \((\text{Adj/first})\) N is more specific than \((\text{Adj})\) N
 - Conflicting patterns are resolved by count statistics
Algorithm for Organizing Rewrite Patterns

(Stage A) Organize patterns into a hierarchy:
1. Patterns with the same source rule are grouped in the same group
2. Inside each group, order patterns by counts
3. For each group pair (A,B), add a link A->B if source rule of B is more specific than A, and there is no other group between A and B
 • The result is a network of rule groups

(Stage B) Filter groups to reduce hierarchy:
 • delete a group if it is too similar to parent groups

Hierarchy of Pattern Groups

Idea: Always apply Most specific rule

Finally,...

Applying Rewrite Patterns

• Greedy algorithm:
 • Given parse tree T, iteratively apply pattern to nodes in T
 • The pattern applied is the most specific pattern possible
 • Traversal order is irrelevant since reordering will only change order of children

Experiments

• TrainSet:
 • English-French Canadian Hansard corpus
 • Extracted 2.9M patterns
 • 56k patterns after organizing/filtering
 • Each source parse tree triggers 1.4 patterns on average
 • Common patterns: reordering of noun and its modifiers

• TestSet1:
 • 3971 Hansard sentences (not in TrainSet)
 • Ave sentence length: 21.7 words
• TestSet2:
 • 500 sentences from various news articles
 • Ave sentence length: 28.8 words

Results & Observations

(Refer to Fig 6 & Fig 7 in paper)

• Compare baseline and new system BLEU scores
 • Results for both TestSet1 and TestSet2.
 • Plot BLEU score against varying maximal clump length
 • Note: BLEU scores calculated from only one reference

• RESULT 1: Clump-based systems benefit from memorizing n-grams but performance saturates as n increases
 • This is because there are fewer high order n-grams that appear in both TrainSet and TestSet

• RESULT 2: TestSet1 curve saturates at n=4, but TestSet2 curve saturates at n=6.
 • Difference of saturation point indicates degree of similarity to TrainSet

• RESULT 3: For TestSet2, reordering is better than baseline regardless of n, but for TestSet1 this is only true for n<4
 • Together with RESULT2, this implies main benefit of reordering is for unseen source word sequences
Non-Monotonic Decoding Experiment

- Approach in Fig 6&7 is to first reorder source phrases, then translate in *monotonic* order
- To test effect of reordering at *target* side, allow *non-monotonic* reordering at decoder
- Some form of restricted permutation was used
- BLEU scores with one reference:

<table>
<thead>
<tr>
<th></th>
<th>Non-Monotonic</th>
<th>Monotonic (Fig 6,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.187</td>
<td>0.196</td>
</tr>
<tr>
<td>Reordering system</td>
<td>0.185</td>
<td>0.215</td>
</tr>
</tbody>
</table>

Conclusion and Future Directions

- Addressed 2 limitations of clump-based SMT
- Proposed:
 - Automatic method for extracting rewrite patterns based on parse tree and phrase alignments
 - Applying rewrite patterns to source tree, then decode monotonically
- Future directions:
 - Try on language pairs with more word order difference
 - Study how parsing accuracy affects reordering and MT results
 - Use rewrite patterns directly in decoders

Discussions